For function f defined by (1), let f -1(0)=0 and for x>0,
f -1(x)=i ↔ f(i-1)<f(i)≤ x<f(2i).
If 2(i2)≤ x< 2((i+1)2) then f -1(x)=2i.

Similar definitions are used for functions f defined by (2) and (3). For functions f defined by (1),(2), or (3), we will consider the structure
S = < N, <,  0,  1,  +, {[/n] | n=1,2,…}, f, f -1 >
of signature
{<,  0,  1,  +, {[/n] | n=1,2,…}, f, f -1 }.


Lemma 11

Any first-order formula is equivalent to a quantifier-free formula in S.

Previous page
Next page