Let
f(x)= 2([log2x]2)           (1)
for x>0, and f(0)=0. Here
[log2x]=i 2i≤ x<2i+1.
If 2i≤ x<2i+1 then f(x)=2(i2). This f is not interpretable in <N, <, +, 2x> because the first-order theory of <N, <, +, 2x, f> is undecidable.

The same quantifier elimination holds for
f(x)= 2P([log2x])           (2)
where P(x)=dnxn+dn-1xn-1 +…+d1x+d0,
d0,d1,…,dn
are integer numbers, n>1, and dn>0.

The same quantifier elimination also holds for
f(x)= mg([logmx])           (3)
where m is a natural number, m>1, g is a unary function from natural numbers into natural numbers, g is periodical by module m for any positive natural m, and g(n+1)−g(n)>n.

Previous page
Next page