
The two-field model includes the equations of the single-field model and additional equations. Six

dispersion surfaces for the two-field models can be split into two groups. The surfaces of the first group

correspond to those of the single-field model. Thus, two-field models possess the properties of single-

field models and provide a good approximation of the dispersion surfaces for the discrete system for

long wavelength waves. The dispersion relations of the second group of surfaces correspond to

additional equations of the two-field model. The comparison shows that the models “b”, “c”, and “d”

specify the single-field micropolar model for short waves with the wave numbers around the corners

(π, 0), (π, π), and (0, π) of the first Brillouin zone, respectively [5]. Figures 5a and 5b show area of the

first Brillouin zone where relative error |(ωi
cont.– ωi

discr.)/ ωi
discr | for the models correspond to the

macro-cells “b” and “c” is smaller than 5%.

2.5. One-dimensional solutions for thin layer (structural interface). Also generalized models are

more general and include conventional model, they are more complex and one of important questions in

generalized continuum mechanics is the questions of Sec. 1.3.: where the model give new results, can

be and should be used? We consider the one-dimensional deformations of a lattice placed between two

rigid components (see Fig. 7) [8]. Assuming that the generalized displacements are constant for elements

along the diagonals, i.e. for k+m = const, we denote components uk,m, vk,m, and φk,m by using the

abbreviated notations Um, Vm, and Фm. The equations for Um and Vm, Фm are decoupled, and we will

concentrate on the solutions for Um only.

In the new co-ordinates Oξη, discrete equation of motion has the form

Correspondent one-dimensional equations of the single-field higher-order gradient theory  have the form

This equation can be obtained independently by using Taylor series expansions in Eq (4).

1.1. Why continuum modelling? Field theories are effectively used for modelling structural systems.

Some reasons are as follows: continuum models help to define generalized macro-characteristics of

systems; in some cases continuum models make it possible to find analytical solutions by using well-

developed mathematical methods; in cases when analytical solutions cannot be found, one can use an

effective numerical methods and packages based on artificial discretisation; field theories represent itself

coupled set of interpenetrating theories.

There are however structural effects, which are not captured through classical continuum models.

This may leads to essential errors in application. The study of such effects within the framework of the

field theories requires the development of generalized continuum models.

2.1. Cosserat lattice. Discrete model. We consider a Cosserat lattice, i.e. a lattice whose deformations

are described by displacements un, vn, and by rotations φn of its elements. The elements are placed at the

nodes of a square lattice as is shown in Fig. 1a.

The potential energy associated with the elastic connection of elements m, k has the following form

The expression for the kinetic energy of elements has the form

Discrete equations of motion are obtained by using Lagrange's equations.

2.2. Single-field micropolar model. In the micropolar model it is assumed that deformations of a

discrete system can be described by using the single vector function {u(x,y,t), v(x,y,t), φ(x,y,t)}, which

has the same components of the vector of generalized displacements {uk,m(t), vk,m(t), φk,m(t)} of the unit

cell. It is assumed that vector-function coincide with vector of displacements at nodes (kh, mh). The

substitution w(x±h, y±h) instead wk±1,m±1 in the discrete equations and using Taylor series expansions

gives a set of equations, which are differential with respect to spatial and temporal variables. Keeping

derivatives up to the second order leads to the conventional single-field conventional model [3]. Higher

order micropolar model [4] include derivatives of the fourth order.
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1.2. Generalised continuum modelling of cellular solids: three of possible approaches. Physical path

to the development of generalized models consists in the analysis and evaluation of key physical

hypotheses of existing models and further their rejection or generalization.

One can note the following possible ideas:

• Intra-cell approach: additional internal degrees of freedom for unit cell are considered. For example, in

Cosserat and micropolar models rotational degrees of freedom of structural elements are taken into

consideration in addition to displacements [1, 2].

• Higher derivatives of the fields are taken into account in higher-order gradient models.

• Macro-cell approach: by using a macro-cell, comprising of several elementary unit cells, and,

accordingly, by increasing the number of vector fields in order to describe the deformations of the system

we come to models of multi-field theory.

It is is importunate to to note, that these hypotheses are mutually independent, complementary and can

be used in various combinations. This note will be used in Sec. 2.3.

1.3. Where multi-field approach have been work? Some examples

• Stability problems: continuum modelling of loss of stability as for long- such for short-wavelength

forms (Fig. 1).

• Short-wave deformations near boundaries, defects, localised forces (Fig. 2). 

• Phase transitions: multi-field soliton dynamics (Fig. 3). 
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Fig 2.

Fig. 3. A layer under internal pressure. Multi-field description of phase transition between  two three-

periodic static solutions.

1.4. Why multi-field approach works? From physical point of view, the multi-field theory is based on

clear physical assumptions, which are generalization of the basic hypothesis.

Mathematically, Figs 1-3 demonstrate that both slowly and rapidly varying displacements are

effectively described by two smooth field functions. This may help qualitatively understand why multi-

field models with lower gradient terms provide good approximations for both slowly and rapidly varying

displacements. Long-wavelengths deformations may be well described by using a slowly varying single

function of generalized displacements but when we try to describe the short wavelengths deformations it

should rapidly vary in the corresponding areas. For this reason, the single-field models are well for long-

wavelength solutions but do not give good approximations for long-wavelength solutions or do not

capture them at all.

Fig. 1. As long- such sort-wavelength forms may

be effectively described by slowly varying

functions in two-field model, while single function

described short-wave form should be highly

varying.

(5)

(1)

   
     

 
 









x y
yx

N

r

N

p
pr

prpr
hh

yx

tyxw

p

h

r

h
tyxwethyhxw

0 0

,,

!!
,,,, (3)

2.3. Hierarchical system of multi-field micropolar models. For deriving the N-field model we consider

as a basis a macrocell, which consists of N elementary cells [5, 7, 8]. Although, all elements of the lattice

(Fig. 4a) are identical they are marked with different numbers (an examples are shown in Fig. 4b-e). We

use the notations uk,m
[n], vk,m

[n], φk,m
[n] with superscript n=1..N for the components of vector of generalised

displacements. Then, for the particles marked by different numbers we obtain discrete equations of

motion. Instead of using the single vector function, N vector functions {u[n](x,y,t), v[n](x,y,t), φ[n](x,y,t)}

are used in the N-field theory to describe the displacements and rotations of particles marked by numbers

n=1..N, respectively. By using Taylor series expansions of displacements and rotations in the discrete

equations around the points at which the equations are written, we come to equations of N-field theory.

2.3.1. Two-field micropolar models. By using the procedure described above, we derive three types of

the two-field models, N=2, corresponding to macro-cells presented in Fig. 4b-d [5]. In the linear case, the

derived systems of six equations can be split in two uncoupled systems. One of them is the system of the

equations of the micropolar theory, and, therefore, all models possess properties of conventional

micropolar model. The second system varies with the model. Its meaning will be clarified by the

following analysis in Sec. 2.5.

2.3.2. Four-field micropolar model. The four-field model correspond to macro-cell shown in Fig. 4e. It

consist of twelve equations and combines the conventional Cosserat model and all two-field models

obtained in Sec. 2.3.1 into one [5].

2.3.3. Higher-order gradient multi-field micropolar models. Hypotheses mentioned in Sec. 1.2 are

mutually independent, complementary and can be used in various combinations. In Sec. 2.3.1 and 2.3.2

we use ideas of micropolar and multi-field approaches. Keeping derivatives up to the fourth order in

expansion (3) leads to the hierarchical system higher-order gradient multi-field micropolar models [8].

2.4. Plane wave solutions. The comparative analysis of the models.  We compare models by using 

plane wave solutions

The dispersion curves of the conventional and higher-order gradient single-field models coincide

with the dispersion curves of the discrete system at the point (Kx, Ky)=(0, 0) and approximate them

around this point [3]. The higher-order gradient model improves the accuracy of the approximation at

this point in comparison with the classical micropolar model. However, for short wavelength waves both

single-field micropolar models produce results with an essential error.

Fig. 5. Area of the first Brillouin zone where relative error   |(ωi
cont.– ωi

discr.)/ ωi
discr | for the models correspond 

to the macro-cells “b” and “c” is smaller than 5%. The dispersion surfaces of the micro-rotational waves of the 

square lattice and four-field Cosserat model. 

Fig. 6. Figure illustrates the results of the

comparative analysis of the models, the

accuracy of the approximation of the

dispersion surfaces of the discrete system

through the dispersion surfaces of (a) single-

field and (b) “c” two-field models, and the

influence on accuracy of the order of

derivatives in the models. The dispersion

curves for the discrete system in the sections

Ky = 0, Kx = π, Kx = Ky are represented by

solid lines. The same curves obtained for the

field models with derivatives up to second

and fourth orders are represented by dotted

and dashed lines, respectively.

Similarly, changing the variables and considering one-dimensional displacements, additional equation

of 2D two-field model (model “c” in Sec. 2.3), leads to the second equation of the two-field model

In order to explain the notations and to illustrate the method of derivation of the multi-field models

described in Sec. 2.3, we will obtain Eqs. (5) and (6) of the two-field model directly from Eq. (4).

Although the unit cell in the problem under consideration consists of the single layer, we assume that a

cell of periodicity consists of two layers and use the notations U2n
[1](t) and U2n+1

[2](t) for displacements of

the layers with coordinates ξ=2nH and ξ=(2n+1)H, respectively. Eq. (4) can thus be rewritten in the form

We use two functions U[1](x, t) and U[2](x, t) in order to describe displacements of odd and even layers.

The Taylor series expansions of the displacements in Eqs. (7) and (8) up to fourth order terms around the

points for which these equations were obtained, gives the system of coupled equations for the two-field

model

where we separate the operator L for the single-field model, Eq. (5), from the additional operator L*,

which describes the interaction of the fields. This representation of the model can be useful for the

interpretation and the generalization of two-field model, in particular in the presence of nonlinearities. In

the linear case, one can to split the system of coupled equations (9) in two independent equations (5) and

(6) by introducing the new field functions
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Fig. 7. Representation of a thin

lattice layer in a problem of tension

between two rigid parts in different

coordinate systems.

Fig. 8. Dispersion curves of discrete layer system for harmonic, KRe=0, and

localized short-wave solutions, KIm=0 (solid lines). The same curves

obtained by using two-field models with derivatives up to second and fourth

orders (dotted and dashed lines, respectively).

2.5.1. Short-wave dynamical and static solutions. Comparison of the models. The analysis of the

discrete, single- and two-field models is based on the solutions of the form Um(t)=Ueiωt-Km and U(x,

t)=Ueiωt-Kx/H with complex value K=KRe+iKIm. The case of harmonic waves, KRe=0, was considered in Sec.

2.5 and illustrated in Fig. 6 on interval MΓ. It is interesting compare models for localized solutions, when

KRe is not equal to zero. Analysis show that discrete model have branch of short wave solutions KIm=π

(solid line in Fig. 8). Single-field models with derivatives up to second and even forth orders do not give

such solutions, while two field model give it. Correspondent curves for two-field model with derivatives

of the second and fourth orders are shown by dotted and dashed lines in Fig. 8. Comparison for short-

wave localised static solutions is presented in Figs. 9 and 10.

Fig. 9. (a) Displacements of layers of the lattice (circles). Their

approximations by using two slowly varying functions in the two-field

model (dashed lines). (b) The differences of the displacements of

neighboring elements calculated by using the discrete and two-field

models (circles and crosses, respectively). Continuous and dashed lines

are drawn to underline short wavelength behavior of the solutions near

the boundaries.

Fig. 10. The dependencies of the

localization parameters, λ and Λ, on

the parameter 1/γ=(Kn+Ks)/Kn
d of the

discrete system calculated by using

the discrete model (solid line) and

two-field models with derivatives up

to second (dotted line) and fourth

(dashed line) orders.

The N-field theory is obtained as a continuum analogue for the discrete model with a periodic cell

containing N primitive cells by using N vector fields to describe deformation. This approach gives the

possibility to construct a hierarchy of models with increasing complexity and accuracy. By increasing the

number of fields, the multi-field approach gives a natural way to describe both long- and short wavelength

deformations. The latter ones are often considered as inaccessible for continuum models. However, in some

cases such deformations may become very important, in particular in fracture, instability, and plasticity

problems. Since the multi-field theory is valid for both long and short waves, it is an appropriate theory to

describe the coupling between effects on macro- and structural levels.

Two examples of Cosserat solids with unusual properties composed from the finite size particles for

which described theory may be useful: auxetic materials, i.e. materials with negative Poisson’s ratio (Fig.

11) [6, 7], and materials with chiral microstructure (Fig. 12).
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Fig. 11. Auxetic material. Fig. 12. Material with chiral structure. 


