
Total Homeostaticity and Integrity
Constraints Restorability Recognition 1

Michael I. Dekhtyar
Dept. of CS, Tver St. Univ.

3 Zheljabova str.
Tver, Russia, 170000
dekhtyar@tversu.ac.ru

Alexander Ja. Dikovsky
Keldysh Inst. for Appl. Math.

4 Miusskaya sq.
Moscow, Russia, 125047
dikovsky@spp.keldysh.ru

Abstract
We introduce and explore a property of deductive data bases with updates wich we call total
homeostaticity, and which substantially generalizes the following their property: ”for any given
external update violating the integrity constraints there exists a reaction of the data base, which
restores the integrity constraints”. This property is characteristic of active data bases. We explore
the computational complexity of total homeostaticity recognition in various subclasses of Datalog
programs with updates and show that it is much simpler than the homeostaticity in a specific DB
state. In particular, it turns out to be polynomial time solvable in several situations of interest for
applications.

1 Introduction

In this work the deductive data bases (DDBs) serve as a model of interactive discrete
dynamic systems with complex states described by relations over values of multiple pa-
rameters. At any given moment the system state is represented by a data base state (DB
state), i.e. a finite set of extensional facts. Possible actions (transitions) of the system
in given states can be represented by some binary relation ` . External stimuli of the
active medium of the system (disturbances) also change states and can be represented by
another binary relation d−→ . In our approach the fundamental difference between these
two relations is determined by the level of our knowledge about them. The theory of
behavior of the system is assumed to be known. This being so, we describe it in the form
of a logic program with updates P over DB states. More specifically, a transition from
state E1 to state E2, i.e. the action E1 ` E2 is described as a computation of some

predefined goal :− a of P transforming the first DB state into the second: E1

a
`P E2.

As for the disturbances, one can always estimate the maximal possible disturbance, and
evaluate the effect of a committed disturbance on the current state. However, one cannot
predict in the given state which disturbance is to be committed. E.g., in a bank there exists
the list of feasible services required by its clients (disturbances), and the corresponding
transactions (actions), but one cannot predict exactly which orders for the services emerge
at the given moment.

Local behavior of the system in the current state E0 is described as one interaction
with its medium in this state. There are two types of interactions depending on what

1This work was sponsored by INTAS (Grant 94-2412) and by the Russian Fundamental Studies Foun-
dation (Grant 96-01-00395).

1

comes first, a medium disturbance or a system action: E0
d−→ E∗1

a
`P E1 and

E0

a
`P E∗1

d−→ E1. Normally, one can distinguish between feasible and not feasible
interactions, depending on a criterion of admissibility of system states. Each feasible in-
teraction applies to an admissible state E0 and yields an admissible state E1. However,
the intermediate state E∗1 may in general be inadmissible, in which case the reaction
compensates for the ruinous stimuli. We represent the admissibility criterion by some
integrity constraints (IC) expressed by a formula or a (logic) program Φ over DB states.
In terms of the IC the feasibility of the interaction is expressed as follows: the interaction

of the form E0
d−→ E∗1

a
`P E1 or E0

a
`P E∗1

d−→ E1 is feasible if E0 |= Φ and
E1 |= Φ. Thus, the discrete dynamic system is represented by the deductive data base
(DDB) B =< P ∪ GOALS, Φ >, its medium is described by relation d−→ , and their
interaction is expressed in terms of feasible interactions.

Global behavior of the system in current state E0 is represented by sequences of (fea-
sible) interactions starting in E0 : the (feasible) trajectories. Basically, we have two types
of trajectories corresponding to the two types of interactions above: disturbance-action
trajectories

E0
d−→ E∗1

a1

` E1
d−→ E∗2

a2

` E2 ...
and action-disturbance trajectories

E0

a1

` E∗1
d−→ E1

a2

` E∗2
d−→ E2 ...

Infinite feasible disturbance-action trajectories represent the homeostatic behavior of the
DDB in spite of disturbances of its medium: the DDB always manages to restore the IC
along this trajectory if and when they are violated by the medium disturbances. Such
trajectories are called homeostatic. Dually, the infinite feasible action-disturbance trajec-
tories represent the stable behavior of the DDB owing to disturbances of its medium: the
medium always compensates along the trajectory for possible ruinous actions of the DDB.
They are called stable.

Trajectories of each type form a tree with the root E0 : Tda(E0) and Tad(E0)
respectively. A number of natural properties of interactive behavior of B in a given DB
state can be formalized in terms of these trees.

Definition 1 Let B be a DDB and d−→ be a disturbance relation. Let Q1, Q2 ∈ { ∀,∃}.
Then B is d−Q1Q2-homeostatic in DB state E0 if in the tree Tda(E0) there is a Q1Q2-
subtree in which all branches are infinite homeostatic trajectories. B is d−Q1Q2-stable
in DB state E0 if in the tree Tad(E0) there is a Q1Q2−subtree in which all branches are
infinite stable trajectories.

In [4] we introduce ∃∃-stability and explore its computational complexity. In [5] the
∀∃-homeostaticity is introduced and investigated. Some other types of homeostatic and
stable behavior of a DDB in a specific DB state are studied in [6].

This paper is devoted to the property of total homeostaticity of a DDB, i.e. homeo-
staticity in each DB state:

∀E , E∗1 (E |= Φ & E d−→ E∗1 ⇒ ∃a, E1 (E∗1
a
` E1 & E1 |= Φ)).

It is equivalent to ∀∃-homeostaticity in any admissible DB state. This property has
attracted widespread attention because it corresponds to an important and long known

2

scenario in DDBs applications. In order for a DB state of a propositional DDB, violat-
ing the IC, to be transformed into a DB state satisfying the IC, the so called revision
algorithms (see e.g. [11]) are applied. In fact the same transformation is investigated in
[12, 13] in more general context. Here the IC is expressed by a rather general revision pro-
gram P and partial algorithms are proposed transforming a given inadmissible DB state
E into a stable model of P (in the sense of [8]), ”induced” by E . In both cases external
updates are treated implicitly: the initial inadmissible DB state may be viewed as the
result of such a ruinous update. In [10] external elementary updates (insertion or deletion
of a ground literal) are explicit, the IC Φ is expressed by simple productions (rules), and
algorithms are described ”constructing” a model of Φ consistent with an input update.
So in these papers external DB updates correspond to destructive disturbances and the
algorithms enforcing the IC correspond to restoring DDB actions in our terms. This is in
fact the basic scenario in active data bases (cf. [3, 9]), where the disturbances are either
the elementary updates or some external events recognizable by action rules. Here again
the total homeostaticity is guaranteed by some strategy over actions.

It should be stressed that while in the cited literature one is always interested in meth-
ods which guarantee the total homeostaticity, we are investigating the inverse problem:
given a DDB B in certain class of DDBs P, an IC Φ in a class of ICs I, and a
disturbance relation d−→ restricted in some sense, one should recognize whether B is
totally homeostatic with respect to d−→ .

The data base scenario above is only one among many others, where the property of to-
tal homeostaticity describes the intended steady behavior of a discrete system in an active
medium. This property is peculiar to many interactive systems whose operation involves
consumption, compensation, and restoration of some resources. The typical examples are
plants, trade enterprises, warehouses, etc. Their medium is the source of appearing orders,
and their activity is aimed at filling all of them and in so doing, supporting their successful
and unlimited operation. Another classical example are the homeostatic biological sys-
tems.

In this paper we explore the computational complexity of the property of total ∀∃-
homeostaticity of DDBs. Not surprisingly, this property is undecidable in the class of all
DDBs. However, it is solvable in the class of DDBs whose logic programs are in Datalogu

(i.e. Datalog extended by elementary updates). We prove in fact that in this class the
total homeostaticity is TIME(22poly

)-complete. Imposing various natural constraints on
recursion, clauses, updates, and ICs, we give the corresponding strict complexity bounds
which turn out to be rather tractable in some classes of DDBs of interest for applications.
E.g., we prove that in the case where Datalogu-programs are stratified with respect to
the elementary updates, and the arity of intensional predicates is bounded, or otherwise
the programs are ground, this problem is PSPACE-complete. If in addition we assume
that logic programs are branching (non recursive) and the intensional signature is fixed
then the problem is ΠP

2 -complete (even co-NP -complete when the programs are ground).
Moreover, the total homeostaticity is polynomial time solvable if the IC is monotonic and
the logic programs are ground, positive (i.e. do not use negation), and either branching
with fixed intensional signature or are production systems. It is interesting to note that
the total homeostaticity is considerably simpler than the homeostaticity in a specific DB

3

state. E.g., as we have shown in [5], already in the class of ground positive production
systems the homeostaticity in a specific DB state with respect to polynomial time ICs is
TIME(2poly)-complete.

Although in some interesting classes the complexity of this problem appears to be too
high, there are natural methods of factorization of the space of all DB states (discussed
in section 5), which can substantially decrease the size of the problems in practical DDB
applications.

2 Basic Notation and Definitions

We consider a 1st order language L in a signature containing: pairwise disjoint sets Pe of
extensional predicates, Pq of intensional query predicates, and Pu of intensional update
predicates, and a set of function (and constant) symbols F. H denotes the Herbrand
universe of L, and Be, Bi the extensional and intensional Herbrand bases. DB states
are finite subsets of Be. We consider logic programs with updates in L with clauses of
the form Head :− Body, where Head is an intensional atom p(t̄) with p ∈ Pq ∪Pu,
and Body is a (possibly empty) sequence of:

- literals of the form q(ū) or ¬r(v̄) with r /∈ Pu, (i.e. only atoms with extensional
and intensional query predicates, can be negated),

- elementary DB updates insert(Fact), delete(Fact), where Fact is an extensional
atom,

- assignments of the form X := e and arithmetical constraints of the form e1 < e2

with e, e1, e2 being arithmetical expressions.
So we subsume that numerals and arithmetic operators are included into F. The semantic
scheme below will show that they are interpreted in the standard way.

Definition 2 Let P be a logic program with updates. We say that a predicate p refers to
a predicate q if there is a clause p(t̄) :− α1, ..., αi, q(s̄), αi+1, ..., αr in P. We consider
the relation ”depend on” which is the reflexive and transitive closure of the relation ”refer
to”. Maximal strongly connected components of the graph G(P) of the relation ”depend
on” are called cliques. A predicate (a goal, a subgoal) is stationary if it does not depend on
elementary updates, assignments, and update predicates.

We distinguish the following important classes of logic programs with updates.

Definition 3 A logic program with updates P is stratified if:
1) all query predicates are stationary;
2) let Pq be the set of definitions of all query predicates in P : Pq = P(Pq). Then

for any DB state E the logic program Ps = Pq ∪ E is stratified in the sense of [1].
A logic program with updates P is update (u-) stratified if it is stratified and in every
clause p(ū) :− α1, ..., αi, q(v̄), αi+1, ..., αr in which p, q are update predicates belonging
to the same clique of G(P), all predicates in αi are stationary.

The essence of the u-stratifiability is that DB updates are available only at the steps where
a clique is changed. This constraint provides upper bounds to the number of elementary
DB updates fired in the course of the transaction caused by an update predicate call.

4

Example 1 Let Pe = {e/1} and Pu = {a/0, b/0, c/0}. Then the following program is
u-stratified:
a :− e(0), b.
a :− insert(e(0)).
b :− ¬e(0), a.
b :− e(I), I1 := I + 1,¬e(I1), delete(e(I)), insert(e(I1)), c.
c :− e(I), I > 0, I1 := 2 ∗ I,¬e(I1), insert(e(I1)).

Here the dependency subgraph on G(Pu) consists of two cliques: {a, b} → {c}.
Throughout this paper we consider only stratified logic programs with updates and call

them simply logic programs with updates.

The operational semantics of a logic program with updates P is represented by

a relation of the form E ∪ { :− u}
θ
`P E ′ ∪{ :− v}. Intuitively it says that P reduces

via the answer substitution θ the goal :− u when in the input DB state E , to the
goal :− v, and changes E to the output DB state E ′. The following rule schemes
1 - 7 define this relation formally (index P is dropped). The letters u, v, φ in these
schemes stand for sequences of subgoals, 2 is for the empty goal, θ, θ′, and σ are
for substitutions and for an MGU, ε denotes the identity substitution, e, e′ denote
arithmetical expressions, A,H stand for intensional atoms, Fact is for an extensional
atom, and stable mod(E ′ ∪ Pq) denotes the (unique) stable model (in the sense of [8])
of the stratified program E ′ ∪ Pq.

1.
E∪{ :− u}

ε

` E∪{ :− u}

2. E∪{ :− u}
θ

` E ′∪{ :− A, v}, H :− φ ∈ P and A◦θ◦σ=H◦σ, or A◦θ◦σ∈ E ′ and φ=∅

E∪{ :− u}
θ◦σ

` E ′∪{ :− φ,v}

3. E∪{ :− u}
θ

` E ′∪{ :− X:=e, v}, X is free, e◦θ is ground, θ′=θ[X\val(e,θ)]

E∪{ :− u}
θ′
` E ′∪{ :− v}

4. E∪{ :− u}
θ

` E ′∪{ :− e<e′, v}, e◦θ, e′◦θ are ground and val(e,θ)<val(e′,θ)

E∪{ :− u}
θ

` E ′∪{ :− v}

5. E∪{ :− u}
θ

` E ′∪{ :− insert(Fact), v}, Fact◦θ is ground

E∪{ :− u}
θ

` (E ′∪{Fact◦θ)})∪{ :− v}

6. E∪{ :− u}
θ

` E ′∪{ :− delete(Fact), v}, Fact◦θ is ground

E∪{ :− u}
θ

` (E ′\{Fact◦θ)})∪{ :− v}

7. E∪{ :− u}
θ

` E ′∪{ :− ¬A, v}, stable mod(E ′∪Pq) |= ¬A◦θ

E∪{ :− u}
θ

` E ′∪{ :− v}

These rules support leftmost strategy of subgoals evaluation. Rule 1 introduces the
identity answer substitution. Rule 2 is the standard resolution step. Rules 3 and 4 deal
with arithmetic. All variables in expressions e, e′ should be instantiated (by numbers).
Rules 3, 4 do not change DB states. val(e, θ) denotes the value of the arithmetical

5

expression e in the environment θ. The assignment X := e changes answer substitution
θ binding X by val(e, θ). Rules 5 and 6 are the only rules changing DB states. They
describe the effect of elementary updates. Specifically, rule 5 changes DB state E ′ to DB
state E ′∪{Fact◦θ)}. Rule 7 indicates that the negation is resolved in the (unique) stable
model stable mod(E ′ ∪ Pq). It should be noted that our choice of negation semantics is
quite arbitrary. Any negation semantics ”effectively computable” in finite models will do
here.

Rules 1 - 7 associate with each update predicate a/0 the following nondeterministic

action operator
a
`P on DB states: E

a
`P E ′ ⇐⇒ E ∪{ :− a}

θ
`P E ′ ∪{2} for some θ.

A DDB B =< P ∪ { :− a1, . . . , :− an }, Φ > includes an intensional logic program with
updates P, a predefined set of 0-ary goals { :− a1, . . . , :− an} implementing DB state
actions, and integrity constraints (IC) embodied by a property Φ of DB states. The

behavior of B is defined by relation `B which is the union of relations
ai

`P , i = 1, ..., n.

E.g., for program P in Example 1 {e(0)}
a
`P {e(0)} and {e(0)}

a
`P {e(1), e(2)}

hold.

3 Problem Classes

We explore the computational complexity of the following problem. Given a DDB B = <

P∪{ :− a1, . . . , :− an }, Φ > and a disturbance relation d−→ (in some representation),
one should check whether B is ∀∃-homeostatic with respect to d−→ in all DB states
E which satisfy Φ.

It is readily seen that this problem is undecidable if no restrictions are imposed on
its main parameters: logic programs with updates, ICs and disturbance relations. In this
section we introduce various restrictions which come about naturally and guarantee the
decidability of this problem.

Logic programs. We classify the restrictions to logic programs by the form of their
clauses.

Definition 4 A logic program P is positive if it does not use negation. It is called
ground if all its clauses are ground. It is flat if all terms in its clauses are either variables
or constants. We call P branching if it is not recursive, i.e. its dependency graph G(P)
has no cycles. And we call P productional if it defines the unique intensional predicate q/0
and all its clauses are productions, i.e. have the form q :− Con1, . . . , Conk, Act1, . . . ,
Actm where each Coni is an extensional literal and each Actj is an elementary update.
These are exactly the productions used in AI, so we keep their usual syntax:

Con1&...&Conm =⇒ Act1, ..., Actn.

Let us denote by Datalogu the class of all stratified flat logic programs with updates.
This class is the broadest one we consider in this paper, in which the problem of total
homeostaticity is decidable. We also consider the following classes of u-stratified logic
programs:

- USF is the class of u-stratified flat programs;
- USG is the class of u-stratified ground programs;

6

- BRAF is the class of branching flat programs;
- BRAG is the class of branching ground programs;
- BRAG p is the class of positive programs in BRAG.

Note that positive programs may use deletions.
Every class of branching programs has its productional counterpart: PROF, PROG,

and PROG p. The last class is the smallest one. Programs in PROG p have only ground
productions which do not use negation in their premises.

Integrity constraints. For a DB state E and an IC Φ we denote by E |= Φ the
relation ”Φ is true on E”. The nature of IC Φ is immaterial here. What is essential is
that Φ has a constructive representation in some formal language (a logical formula, a set
of productions, or a polynomial time Turing machine, etc.) for which there is a universal
algorithm checking that E |= Φ.

Definition 5 An IC Φ is preserved upwards if whenever E ⊆ E ′ and E |= Φ, then
E ′ |= Φ.

Below we analyze the complexity of stability problems using ICs in the following three
classes.

IC0 : Φ is preserved upwards and there is a polynomial time algorithm which enu-
merates all minimal DB states satisfying Φ.

IC1 : the problem E |= Φ is in P.
IC2 : the problem E |= Φ is in PSPACE.

E.g., class IC0 contains ICs expressed by positive ground DNFs, negation-free logical
programs, and some monotone graph properties (e.g., connectivity). The well-known func-
tional dependencies and a number of properties of model size (e.g., parity) belong to class
IC1. Class IC2 contains ICs expressed by the 1st order formulas, etc.

Disturbance relations. Constraints imposed on disturbance relation d−→ are expressed
in terms of the following change set:

c(d, E) = {(D+, D−)| there is E ′ : E d−→ E ′, D+ = E ′ \ E , and D− = E \ E ′}.
Let δ = (∆+,∆−) be a pair of two finite subsets of Be. We define the δ-disturbance as the
relation on DB states such that for every E c(δ, E) = {(D+, D−)|D+ ⊆ ∆+, D− ⊆ ∆−}.
Therefore, δ-disturbances specify rather primitive set theoretical bounds to the change
sets, which do not depend on DB states. Whereas in all the theorems below only δ-
disturbances are considered, most of them hold as well for many other classes of distur-
bances which reflect more detailed knowledge about the behavior of the external medium.
E.g., the following k-δ-disturbances reflect the knowledge about the size of change sets:
c(k−δ, E) = {(D+, D−)|D+ ⊆ ∆+, D− ⊆ ∆−, |D+| ≤ k, |D−| ≤ k}. Another broad class
of specific δ-disturbances are the A-δ-disturbances recognized by polynomial time algo-
rithms A : c(A−δ, E) = {(D+, D−)|D+ ⊆ ∆+, D− ⊆ ∆−, A(E , D+, D−) = TRUE}.
These classes reflect some features of external medium effect in the case where the medium
has an open access to DB states. In section 5 we describe so called DDB factorization
which extends properties of δ-disturbances to larger classes of disturbances.

We finish this section by a definition of total homeostaticity problem. For a glass of
logic programs with updates P, a class of ICs I
HOMT (P + I) = {(< P ∪ {G},Φ >, δ) |

P ∈ P, Φ ∈ I, < P ∪ {G},Φ > is δ-∀∃-homeostatic in all E satisfying Φ}.

7

Example 2 Consider the following toy example of a medical DDB.
Let P be the following Datalogu-program:

cure :− disease, medicine, delete(disease), delete(medicine), insert(immunity).
instruction :− disease,¬medicine,¬immunity, insert(medicine).
sound :− ¬disease.
immune :− disease, immunity, delete(desease).

Let Φ ≡ ¬disease∨medicine∨ immunity be the IC and δ = ({disease}, {immunity})
be the disturbance.

This logic program is in PROG, and Φ is in IC0. It is easy to see that the DDB
< P ∪ { :− cure, :− instruction, :− immune, :− sound},Φ >

is total homeostatic. Indeed, in any admissible DB state E only four δ-bounded dis-
turbances are possible: (∅, ∅), ({disease}, ∅), (∅, {immunity}), ({disease}, {immunity}),
and after any of them Φ is restored by an appropriate action. E.g.,

∅ |= Φ and ∅ ({disease},∅)−→ {disease} 6 |=Φ. However, {disease}
instruction

` {disease,

medicine} |= Φ. If, e.g. {disease, medicine}
cure
` {immunity}, then {immunity} |=

Φ. If further {immunity} ({disease},∅)−→ {disease, immunity}, then {disease, immunity}

|= Φ, and {disease, immunity}
immune
` {immunity} |= Φ, etc.

However, if we remove the clause ”instruction” the resulting DDB won’t be δ − ∀∃-
homeostatic in the empty DB state ∅ which is admissible. The matter is that
there is no way to restore Φ in the DB state {disease} without the action ”instruction”.

4 Complexity of total homeostaticity

In this section we establish complexity bounds to the problem of total homeostaticity in
the classes of DDBs defined above. Because of space limitations some proofs are omitted
here, the others are only sketched.

In the theorems to follow finite sets of facts E , ∆+,∆−, etc. are supposed to be
represented in some standard coding. The size of the code |E| is O(CE ∗ FNE), where
CE depends on maximal arity of extensional predicates and on constants used in E ,
and FNE denotes the number of facts in E . This encoding reflects the real size of the
relational DB, and is different from one used in finite model complexity where predicates
are represented by the sequences of their values on all possible data. We use standard
notation for complexity classes. In particular we use SPACE(2poly) for the class of
problems solvable in space 2p(n) for some polynomial p(n), NTIME(2poly) for the
class of problems solvable in nondeterministic time 2p(n) for some polynomial p(n),
T IME(22poly

) for the class of problems solvable in deterministic time 22p(n)
for some

polynomial p(n), etc.
Our first result shows that in the class of productional DDBs which don’t use negation

and for the ICs in the class IC0 the problem of total homeostaticity is traatable. Note that
the update induced by such DDB is not monotonous in general because the productions
may use deletions.

8

Theorem 1
(1) The problem HOMT (PROG p + IC0) is solved in polynomial time.
(2) The problem HOMT (PROG p + IC1) is co-NP -complete.

Sketch of the proof of (1). We enumerate all minimal DB states satisfying Φ. For each
such DB state E we perform the maximal deletion E \∆− = E∗ and then fire in chain
all applicable productions. The answer is ”yes” if for each such DB state E∗ there exists
E1 such that E∗ `P E1 and E1 |= Φ. 2

Theorem 2
(1) The problem HOMT (BRAG p + IC0) is solved in polynomial time, when the size

of intensional signature Pq ∪Pu is bounded.
(2) The problem HOMT (BRAG p + IC0) is co-NP -complete.

Sketch of the proof of (1). As |Pq ∪ Pu| ≤ const, the number of different computation
trees of the DDB [4] (and therefore, the number of its actions) is bounded by a polynomial.
So we can apply the algorithm used in theorem 1. 2

The upper bounds in the theorems to follow make use of the ”contraction lemma”
proven in [4] (Lemma 2), which says that for each computation tree t there is an
equivalent one whose size is bounded by the number of different global contexts of nodes
v in t, i.e. of quadruples E(v)in (input DB state), E(v)out (output DB state),
σ(v)in (input unifier), σ(v)out (output unifier). As a result we can evaluate the size of
computation trees in the introduced classes of logic programs. In particular, for flat DDBs
the size of facts in DB states FNE is bounded by pec

a where pe = |Pe|, c is the
number of different constants and a is the maximal arity of extensional predicates. The
number of different unifiers does not exceed (c + v)v where v is the maximal number
of variables in clauses. Therefore, the size of contracted tree is bounded by 22dNlogN

for
some constant d and the input length N. If the DDB is u-stratified then the height of the
contracted tree, as well as the size of DB states are bounded by 2p(N) for some polynomial
p(N). Therefore, the computation represented by such tree can be simulated in the space
2p(N), which is shown in [4] (see Lemma 2). In the case where the DDB is branching the
height of computation trees is bounded by pi = |Pq ∪Pu|. When the extensional arity is
bounded the size of DB states is polynomial. If moreover the intensional signature is fixed
the size of the computation tree is polynomial. In ground case the size of DB states is
bounded by the input length. So if the DDB is branching or u-stratified its computation
trees can be ”simulated” in polynomial space. After this remark only lower bounds are
sketched in the theorems to follow.

Theorem 3
(1) The problem HOMT (BRAG + IC1) is Πp

2-complete
when the intensional signature Pq ∪ Pu is fixed.

(2) The problem HOMT (BRAG + IC1) is PSPACE-complete.
(3) The problem HOMT (BRAF + IC1) is Πp

2-complete when the intensional signa-
ture Pq ∪Pu is fixed and extensional arity is bounded.

(4) The problem HOMT (BRAF + IC2) is co-NTIME(2poly)-complete.

9

Sketch of the proof. (1,3) Lower bound. We reduce to our problem the well-known Πp
2-

complete problem of validity of quantified propositional formulas of the form
Ψ = ∀x1 . . .∀xk∃y1 . . .∃ymφ(x1, . . . , xk, y1, . . . , ym) where φ(x̄, ȳ) ∈ 3-CNF.

Given such a formula Ψ, we construct an input instance (< P ∪ G, Φ >, δ) of the
HOMT -problem as follows. We set Pe = {x1, . . . , xk, y1, . . . , ym}, Pu = {g, f}. The
program P has the clause
g :− f, f, . . . , f (m occurrences),
and for every 1 ≤ j ≤ m it includes two clauses:
f :− insert(yj)
f :− delete(yj).
Let φ(x1, . . . , xk, y1, . . . , ym) serve as the IC, and δ = (∅, ∅). Then Ψ is valid iff
(< P ∪ { :− g},Φ >, δ) ∈ HOMT (BRAG + IC1).

(2)Lower bound. Let us fix a nondeterministic Turing machine M which works
in space bounded by some polynomial p(n), n being the length of an input word
x = ai1ai2 ...ain . We set N = p(n) . Let A = {a0, a1, . . . , am} be the tape alphabet and
Q = {q0, . . . , qr} be the state alphabet of M where q0 is the initial state, qr−1 = ”no”
is the rejecting state, and qr = ”yes” is the accepting state. We assume that at the last
step the head of M visits the first cell in one of its final states ”yes” or ”no”. We choose
the extensional signature Pe = Q ∪ {hj | 1 ≤ j ≤ N} ∪ {aj,k | 1 ≤ j ≤ N, 0 ≤ k ≤ m}.
These predicates describe the state and the position of the head, and the symbols written
in the tape cells. The computation time of M with the input x is bounded by
T = N(r + 1)(m + 1)N . We set l = [log2T] + 1 and choose {g, p1, . . . , pl, s} as the
intensional signature. The program P has the following clauses.
g :− ”yes”
g :− p1

pi :− pi+1, pi+1 (1 ≤ i ≤ l − 1)
pl :− s, s.
Besides them for each instruction qjai → quavS (S ∈ {−1, 0, 1}) it includes the set of
clauses
s :− qj , hk, ak,i, delete(qj), delete(hk), delete(ak,i), insert(qu), insert(akv), insert(hk+S)
for 1 ≤ k ≤ N.
The unique goal is :− g. δ = (∅, ∅). Finally, the IC is Φ = ”yes” ∨ INIT where
”yes” says that a DB state represents a successful final instantaneous description, and
INIT says that a DB state represents the initial instantaneous description with input
x . The theorem follows from the fact that M accepts x iff (< P ∪{ :− g},Φ >, δ) ∈
HOMT (BRAG + IC1).

(4)Lower bound. In fact, we show that the complement of HOMT (PROF + IC0) is
NTIME(2poly)-hard. Let us fix a nondeterministic Turing machine M which works in
time bounded by 2p(n) for some polynomial p(n), and keep the assumptions and notation
of the preceding point. Let N = p(n) + 1, and Pe = {bad/0, a/2N + 1, h/2N + 1}.
bad indicates that a DB state does not represent an accepting computation of M with
input x. a(t1, . . . , tN , s1, . . . , sN , i) means that the cell with binary number s1 . . . sN

(si ∈ {0, 1}) at the moment of time with binary number t1 . . . tN contains the symbol
ai. h(t1 . . . tN , s1, . . . , sN , k) means that at the moment t1 . . . tN the head of M visits
the cell s1 . . . sN in the state qk .

10

Let Φ = bad and δ = (∅, ∅}). The program P is formed of six groups of productions
which we just sketch. The productions in groups G1 - G5 check that a DB state does not
represent an accepting computation of M with input x, and if this is the case insert
the fact bad into the DB state.
G1: Productions checking that there is a moment when some cell is empty or contains
two different symbols. We present them as an example:
¬a(T̄ , S̄, 0) & . . .& ¬a(T̄ , S̄,m) =⇒ insert(bad)
a(T̄ , S̄, i) & a(T̄ , S̄, j) =⇒ insert(bad) (for all 0 ≤ i < j ≤ m).
G2: Productions checking that there is a moment when the uniqueness of the head position
or of the state is violated.
G3: Productions checking that at the initial moment facts of DB state do not represent
the initial instantaneous description of M with input x.
G4: Productions checking that there is a moment when a symbol is changed in a cell not
visited by the head.
G5: Productions checking that there is a moment t̄ when the position or the state of
the head, or the symbol against the head are changed incorrectly (the facts at the next
moment do not correspond to any instruction of M).

The last two productions check that a computation represented by a DB state is
successful.
G6: h(1, 0, . . . , 0, 0, . . . , 1, ”no”) =⇒ insert(bad).
h(1, 0, . . . , 0, 0, . . . , 1, ”yes”) =⇒ delete(bad). (∗)
Thus, the production (*) is the only one which leads to DB states violating Φ. The lower
bound is implied by the following assertion.

Lemma 1 M accepts x ⇐⇒ (< P,Φ >, δ) 6∈ HOMT (PROF + IC0).

(⇒) Let DB state E include all the facts representing a successful computation of M
with input x and the fact bad. Then E |= Φ. After the empty update the only applicable
production is (*), and it deletes bad from the state. Therefore, the result E \{bad} 6|= Φ
and {(< P,Φ >, δ) is not ∀∃-homeostatic in E .
(⇐) Let us assume that there is a DB state E such that E |= Φ and for any E∗
if E `P E∗ implies E∗ 6|= Φ. Then bad ∈ (E \ E∗) and therefore, only production
(*) is applicable to E . Then the productions in G3 ensure that E includes all the facts
representing the initial instantaneous description of M with input x. The productions
in G4 and in G5 ensure (by induction) that E includes all the facts representing some
computation of M with input x, which has no more than 2N−1 steps, and productions
in G1 and in G2 guarantee that E contains no extra facts. Since the production (*) is
applicable to E , h(1, 0, . . . , 0, 0, . . . , 1, ”yes”) ∈ E , and therefore, the computation of
M with input x, represented by E is successful. 2

In the proof of point (2) of Theorem 3 we prove as well that the problem HOMT (USG
+IC2) is PSPACE-hard. So we can state now that this problem is PSPACE-complete.
As to the problems HOMT (USF +IC2) and HOMT (Datalogu + IC2) the proofs of
their lower bounds are rather tedious and are omitted here.

Theorem 4
(1) The problem HOMT (USG + IC2) is PSPACE-complete.

11

(2) The problem HOMT (USF + IC2) is SPACE(2poly)-complete.

Theorem 5
The problem HOMT (Datalogu + IC2) is TIME(22poly

)-complete.

Proof. Lower bound. At first we show how DATALOGu-programs can compute arith-
metical functions over arguments of an exponential size using predicates of polynomial
arity and the bounded set of constants.

Definition 6 Let M = 2m and aM−1 . . . a1a0, ai ∈ {0, 1}, be a binary representation
of an integer a, 0 ≤ a < 22m

, and p(m) ∈ Pe. A DB state E represents a by p iff for
every j, 0 ≤ j ≤ 2m− 1, aj = 1 ⇐⇒ p(j0, j1, ..., j2m−1) ∈ E for binary representation
j0, j1, ..., j2m−1 of j.

E.g. the state E = {p(0, 0), p(0, 1), p(1, 1)} represents 11 by p(2), and empty state
E0 = ∅ represents 0.

Definition 7 Let f(x1, ..., xn) be an arithmetic function, p1, ..., pm, r are an extensional
predicates (r may be one of p1, ..., pn). A DATALOGu-program P∪{ :− g} computes
f from p1, ..., pn to r on interval [0, N] if for any n-tuple (a1, ..., an) such that
aj ∈ [0, N] (1 ≤ j ≤ n) and f(a1, ..., an) ∈ [0, N], and for every DB state E which
represents aj by pj (1 ≤ j ≤ n) update g deterministicaly transforms E into such
DB state E1 that represents f(a1, ..., an) by r.

The following program P1 ∪ { :− add1} computes function s(x) = x + 1 from p
to p on interval [0, 22m − 2].
P1 :
add1 :− g(0, 0, ..., 0).
g(X1, ..., Xm) :− ¬p(X1, ..., Xm), insert(p(X1, ..., Xm)).
g(X1, ..., Xm) :− p(X1, ..., Xm), delete(p(X1, ..., Xm),
next(X1, ..., Xm, Y1, ..., Ym), g(Y1, ..., Ym).
The intensional predicate next(2m)(X1, ..., Xm, Y1, ..., Ym) given input values X1, ..., Xm

representing the binary number x returns output values Y1, ..., Ym representing the
number y = x + 1 for every x < 2m − 1.
next(X1, ..., Xm−1, 0, X1, ...Xm−1, 1).
next(X1, ..Xm−2, 0, 1, X1, ...Xm−2, 1, 0).
next(X1, ..Xj , 0, 1, ..1, X1, ...Xj , 1, 0, ..., 0).
next(1,1, 0, ..., 0).
The following program P2∪{ :− eq pr} checks the equality of two numbers representing
by predicates p(m) and q(m) on interval [0, 22m − 1]. The result is represented by 0-ary
predicate yes(0).
P2 :
eq pq :− eq pq(0, ..., 0).
eq pq(X1, ..., Xj−1, 0, Xj+1, ..., Xm) :− p(X1, ..., Xm), q(X1, ..., Xm),

12

next(X1, ..., Xm, Y1, ..., Ym), eq pq(Y1, ..., Ym) (1 ≤ j ≤ m)
eq pq(X1, ..., Xj−1, 0, Xj+1, ..., Xm) :− ¬p(X1, ..., Xm),¬q(X1, ..., Xm),
next(X1, ..., Xm, Y1, ..., Ym), eq pq(Y1, ..., Ym) (1 ≤ j ≤ m)
eq pq(X1, ..., Xm) :− p(X1, ..., Xm),¬q(X1, ..., Xm), delete(yes).
eq pq(X1, ..., Xm) :− ¬p(X1, ..., Xm), q(X1, ..., Xm), delete(yes).
eq pq(1, ..., 1) :− p(1, ..., 1), q(1, ..., 1), insert(yes)
eq pq(1, ..., 1) :− ¬p(1, ..., 1), ¬q(1, ..., 1), insert(yes)
Similarly one can construct programs for arithmetical operations and relations +,−,×, :
, <, etc. The following assertion shows that the class of arithmetical functions computable
by DATALOGu-programs on DB states is rich enough.

Lemma 2 Let f(x1, ..., xk) be an arithmetic function computable by some Turing ma-
chine M in linear space, i.e. sM(x1, ..., xk) ≤ c(|x1|+ ... + |xk|) for some constant c
and all inputs x1, ..., xk. Then for every n there exist a DATALOGu-program Pn

such that
(1) Pn computes f from p

(n+c1)
1 , ..., p

(n+c1)
k to q(n+c1) on interval [0, 22n − 1] for

some constant c1 independent of n;
(2) the size of Pn is bounded by some polynomial of n.

To proof the lemma we notice that if the length of each input argument xi is bounded
by 2n then the length of the tape of M is bounded by ck2n and its content can
be represented by binary number of the length 2n+c1 for some constant c1. Therefore
an instantaneous description of M of the form wlqiajwr can be represented by two
(n+ c1)-ary predicates pl and pr for wl and wr, and a finite number 0-ary predicates
for states qi and tape symbols aj . Then actions of M on the tape can be simulated by
a standard sequence of arithmetical operations over the representations of instantaneous
descriptions.

Let us fix a deterministic Turing machine M which works in time bounded by 22p(n)

for some polynomial p(n), n being the length of an input word x = ai1ai2 ...ain . We
set N = p(n) .

We define by M and x such DATALOGu-program P, the IC Φ, and the
disturbance δ that M accepts x iff (< P,Φ >, δ) ∈ HOMT (DATALOGu + IC2).

Let A = {a0, a1, . . . , am} be the tape alphabet and Q = {q0, . . . , qr} be the state
alphabet of M where q0 is the initial state, qr−1 = ”no” is the rejecting state,
and qr = ”yes” is the accepting state. Following to S.Cook [2] we assume without
lose of generality that the movement of the head of M can be devided by the following
stages. At the 1-st stage the head of M marks the first cell and moves from the
left to the right up to the first empty cell, marks it as ”END” and returns to the first
cell. At the stage i (i ≥ 1) the head starts in the first cell, then it moves from the
left to the right up to the mark ”END”, shifts this mark to the right into the next
empty cell, and returns to the first cell. So, the stage i takes 2(n + i) steps. The
position of the head of M at any step t does not depend on x. Let us denote by
c(t) the function which given number of step t returns the number of cell in which
the head is at the step t. Let prev time(t) = max{t′ | t′ < t & c(t′) = c(t)} and
next time(t) = min{t′ | t < t′ & c(t′) = c(t)}. Let the predicate first time(t) is true iff
the head attends cell c(t) for the first time at the step t (prev time(t) is undefined).

13

It is easy to check that all functions c, prev time, next time, and first time can be
computed in linear space by Turing machines. So by lemma 2 they can be computed on
interval [0, 22N

] by DATALOGu-programs of polynomial size which use predicates of
arity ≤ 2N.

The program P uses predicate t(2N) to represent the current number of steps of
M, and includes programs which compute the following auxiliary arithmetical operations
and relations on t (we use t to denote the current number of steps representing by the
facts of the form t(i1, ..., i2n) as well):

- time+1 increases current t by 1;
- time−1 decreases current t by 1;
- first time succeeds if first time(t) is true;
- timei (0 ≤ n) succeeds if t = i;
- timegn succeeds if t > n;
- prev time computes prev time(t);
- next time computes next time(t).

Let AP = {q(m1)
1 , ..., q

(mr)
r } be the set of all auxiliary extensional predicates which are

used in computations of these arithmetical operations and relations. We assume that no
facts with predicates of AP are in DB state after any of these computations. Then
Pe = {t(2N), bad(0), good(0)}∪AP. Let update delete all transforms every DB state over
Pe in the empty one. The main part of P includes the following clauses.

(1) go :− good
(2) go :− ¬bad
(3) go :− bad, time0, step
(4) step :− head(yes,X), delete all, insert(good)
(5) step :− time+1, step
(6) head(1, ik) :− first time, timek (1 ≤ k ≤ n)
(7) head(j, 0) :− first time, timegn, time−1, head(j′, i′), time+1

for every pair (j′, i′) such that M includes instruction of the form qj′ai′ → qjaC for
some a ∈ A and C ∈ {−1, 0, 1}.

(8) head(j, i) :− ¬first time, time−1, head(j′, i′), time+1,
prev time, head(j′′, i′′), next time

for every two pairs (j′, i′) and (j′′, i′′) such that M includes instructions of the form
qj′ai′ → qja

′C ′ and qj′′ai′′ → q′′aiC
′′ for some a′ ∈ A, q′′ ∈ Q and C ′, C ′′ ∈ {−1, 0, 1}.

The following lemma asserts the main property of head(j, i).

Lemma 3 Let a DB state E represents a number s by t(2N). Then for each qj ∈ Q
and ai ∈ A the computation of head(j, i) on E succeeds iff on the step s of the
computation M on input x the head of M visits in the state qj a cell with the symbol
ai.

Let IC Phi = empty ∨ good, where formula empty says that tere are no facts in DB
state, and δ = ({bad}, ∅). Then due to the clauses (1) and (2) total homeostaticity of
(< P ∪ { :− go},Φ >, δ) depends only of its behavior on admissible empty state when
disturbance adds the fact bad. And the only way to get into admissible state is to finish
the computation of update go by the clause (4). Then the following assertion finishes
the proof of lower bound.

14

Lemma 4 {bad}
go

` {good} iff M accepts input x in time 22|x|
.

5 DB factorizations

In real application databases data can as a rule be naturally stratified into classes where
specific values of certain attributes are purely informational, i.e. their change within
these classes does not affect neither integrity constraints, nor main operational proper-
ties. The data differing only in such ”insignificant” features can be regarded as equiva-
lent. E.g., if a company database represents contracts by extensional facts of the form
contract(Number, Date, Customer, Sum), then it is natural to consider equivalent all
facts contract(i, d, c, s) differing only in customer names c, because these names are
not relevant from the financial point of view. To be more precise, such equivalences are
not absolute. They are induced by specific data retrieval or analysis procedures. E.g., if
there is a need to find out a cause of queues in a library on the ground of dynamic records
of rendered services, of the form:

report(Y, M, D, Hour,Min, Service, ClientId, ShelfMark, InCharge)
it is natural to suppose two records report(R1), report(R2) equivalent if their projections
onto the attributes Hour,Min, Service, InCharge coincide. In the situations like ours
where one should verify certain global properties of data defined through IC it is natural
to factorize the data with respect to an equivalence compatible with the IC. Such data
factorization sometimes permits reduction of a large and potentially infinite application
domain to a bounded and transparent one.

Definition 8 Let ≡ be an equivalence on H. It can be extended naturally onto Be :
g(t1, ..., tn) ≡ g(t′1, ..., t

′
n) iff ti ≡ t′i for all 1 ≤ i ≤ n. For every D1, D2 ⊆ Be we set

D1 <≡ D2 if D1/≡ ⊆ D2/≡. D1 <≡> D2 if D1 <≡ D2 and D2 <≡ D1.
A binary relation < is compatible with an equivalence ≡ if for any three DB states

E1, E ′1, E2 ⊆ Be such that E1 <≡> E2 and E1< E ′1, there exists such a DB state E ′2 that
E ′1 <≡> E ′2 and E2<E ′2.

A formula Φ is compatible with an equivalence ≡ if for any DB states E1, E2 ⊆ Be

E1 <≡> E2 implies E1 |= Φ iff E2 |= Φ.

We can therefore factorize DDBs as well.

Definition 9 A (factorized) DDB is a triple B =< P ∪ { :− a1, . . . , :− an}, Φ,≡ >,
where ≡ is some polynomial time computed equivalence relation on H and all logic

program action relations
ai

`P and the IC Φ are compatible with ≡ .
Let δ = (∆+,∆−) be a pair of two finite subsets of Be. We can weaken the definition

of δ-disturbance as follows. δ≡-disturbance is the relation on DB states such that for
every E c(δ≡, E) = {(D+, D−)|D+ <≡ ∆+, D− <≡ ∆−}. We call two trajectories of B
equivalent if their DB states with the same ordinal numbers are equivalent.

The following technical lemma reduces in many cases the space of all δ≡-bounded trajec-
tories to a subspace of δ-bounded trajectories.

15

Lemma 5 Let B be a DDB with ground (flat) intensional logic program, E be some
its DB state and δ =< D+,D− > with D+,D− ⊆ Be being finite. Then there is a
finite δ̃ =< D̃+, D̃− > such that for every δ≡-trajectory ω of B starting in E there
is an equivalent δ̃-trajectory ω̃ of B starting in E . In addition, if B is ground, then
| δ̃ | = O(| B | + | E | + | δ |), and if B is flat, thel | δ̃ | ≤ 2pol(|B|+|E|+|δ|).

Lemma 5 can be used for the purpose of extending all the proofs of upper bounds in
the theorems we have proven to the corresponding theorems for factorized DDBs with
disturbances δ≡. In these proofs we find algorithms constructing or guessing a homeostatic
δ≡-trajectory. Application of this lemma guarantees that such a trajectory exists iff there
is a δ̃-trajectory with the same property. The given input pair < B, δ > is therewith
constructively changed to < B, δ̃ > . However, as shows the proof of lemma 5, δ̃ is
constructed in polynomial time in the ground case and in exponential time in the flat case.
Therefore, due to this lemma without loss of generality we can describe algorithms treating
only homeostatic δ-trajectories. Note that c(δ, E) is always finite, whereas c(δ≡, E)
can be infinite.

6 Conclusion

The proposed concept of total homeostatic behavior of DDBs substantially generalizes the
following their property: ”for any given external update violating the IC there exists a
reaction of the data base, which restores the IC”. However, it has much broader scope and
can as well be applied to the analysis of behavior of discrete dynamic systems with complex
states in active medium, such as complex imbedded hardware, or biological systems, or
interactive systems whose operation involves consumption, compensation, and restoration
of some resources, e.g. plants, trade enterprises, warehouses, etc. Among various possible
types of stable behavior we choose here only homeostaticity, because of its close relation
to data base scenarios. Meanwhile, in other application domains we encounter other types
of stable behavior e.g. stable or perspective one, formalized and explored in our previous
papers [4, 5, 6]. We consider rather broad classes of DDBs. So not surprisingly the
complexity of the homeostaticity property in these classes is sometimes very complex.
But in real applications the intensional description of system behavior is formed from
great variety of primitive conditions. E.g., in active data bases the triggered rules are
simple productions. For such primitive DDBs our results guarantee quite tractable upper
complexity bounds. In any case very helpful interactive environments can be created
on the ground of proposed concepts which support experimental analysis of behavior of
discrete dynamic systems in a broad class.

References

[1] Apt, K.R., Blair, H. and Walker A., Towards a theory of declarative knowledge. in:
J. Minker (ed.) Foundations of deductive databases and logic programming. Morgan
Kaufman Pub., Los Altos, 89-148, 1988.

16

[2] Cook S.A., em Characterization of push-down machines in terms of time-bounded
computers. J. of ACM, 18, N 1, 4-18, 1971.

[3] Dayal, U., Hanson,E., and Widom, J., Active database systems. In W. Kim, editor,
Modern Database Systems. 436-456, Addison Wesley, 1995.

[4] Dekhtyar, M.I., Dikovsky, A.Ja., Dynamic Deductive Data Bases with Steady Behav-
ior. In Proc. of the 12th International Conf. on Logic Programming, (Ed. L. Sterling),
The MIT Press, 183-197, 1995.

[5] Dekhtyar, M.I., Dikovsky, A.Ja., On Homeostatic Behavior of Dynamic Deductive
Data Bases. Perspectives of Syst. Informatics. In Extended Abstracts of the Andrei
Ershov 2nd Intern. Memorial Conf. Novosibirsk, Russia, 196-201, 1996. (The full
draft is to appear in LNCS).

[6] Dekhtyar, M.I., Dikovsky, A.Ja., Properties of Steady Behavior of Dynamic De-
ductive Data Bases. Part II. Homeostaticity. Technical rept. 96-09, Universite Paris
XII-Val de Marne, Juin 1996, 1-15.

[7] Eiter, T., Gottlob, G., On the complexity of propositional knowledge base revision,
updates, and counterfactuals. Artificial Intelligence, vol. 57, 227-270, 1992.

[8] Gelfond, M., Lifschitz, V., The stable semantics for logic programs. In R.Kovalsky
and K.Bowen, editors, Proc. of the 5th Intern. Symp. on Logic Programming. 1070-
1080, Cambridge, MA, 1988, MIT Press.

[9] Gottlob, G., Moercotte, G., Subrahmanian, V.S., The PARK semantics for Active
Databases. In Proc. of EDBT’96. Avignon, France, 1996.

[10] Halfeld Ferrari Alves, M., Laurent, D., Spyratos, N. Update rules in Datalog pro-
grams. Rapport de Recherche n. 1024, 01 / 1996, Université de Paris-Sud, Centre
d’Orsay, LRI.

[11] Katsuno, H., Mendelzon, A. O., Propositional knowledge base revision and minimal
change. Artificial Intelligence, vol. 52, 253-294, 1991.

[12] Marek, V.W., Truszcińsky, M. Revision programming, database updates and integrity
constraints. In International Conference on Data Base theory, ICDT, LNCS n. 893,
368-382, 1995.

[13] Przymusinski, T.C., Turner, H., Update by Means of Inference Rules. In V.W.Marek,
A.Nerode, M.Truszczyński, editors, Logic Programming and Nonmonotonic Reason-
ing, Proc. of the Third Int. Conf. LPNMR’95, Lexington, KY, USA, 166-174, 1995.

17

