
Safe Stratified Datalog With Integer Order Does

not Have Syntax

Alexei P. Stolboushkin∗

Department of Mathematics
UCLA

Los Angeles, CA 90024-1555
aps@math.ucla.edu

Michael A. Taitslin†

Department of Computer Science
Tver State University
Tver, Russia 170000
p000101@tversu.ru

September 14, 2006

Abstract

Stratified Datalog with integer (gap)-order (or Datalog¬,<z) is con-
sidered. A Datalog¬,<z -program is said to be safe iff its bottom-
up processing terminates on all valid inputs. We prove that safe
Datalog¬,<z -programs do not have effective syntax in the sense that
there is no recursively enumerable set S of safe Datalog¬,<z -programs
such that every safe Datalog¬,<z -program is equivalent to a program
in S.

Introduction

We consider databases organized over the domain Z of integer numbers to-
gether with the standard linear order. Even if the initial database state
is finite, answers to very simple first-order queries may be infinite. For
domains that admit elimination of quantifiers in first-order formulas, Kanel-
lakis et al. [5] suggested using finitely representable (f.r.) database states,
where extensional database predicates are defined as quantifier-free first-
order formulas. Because of the elimination of quantifiers, answers to first-
order queries in f.r. states are, again, f.r.

∗This work has been partially supported by NSF Grant CCR 9403809.
†A part of this research was carried out while the author was visiting UCLA and

supported in part by NSF Grant CCR 9403809.

1

Although the domain Z does not admit elimination of quantifiers, its
extension with the so-called gap-orders <g for all natural numbers g already
admits elimination of quantifiers. x <g y means x + g < y. Clearly, this
extension of Z is conservative.

Thus, this extended domain admits effective bottom-up evaluation of
first-order queries in closed form w.r.t. f.r. states. “Closed form” means
that whenever you start from an f.r. state, you end up having an f.r. answer
that can therefore be stored in the database and used in future queries as an
extensional predicate. “Bottom-up evaluation” refers to the process of eval-
uating queries according to their structure, from inside-out, by constructing
for each sub-formula a finite representation of its value. This process is much
more efficient than the tuple-based evaluation.

However, the expressive power of first-order queries in this domain is
severely limited. This motivated research into using constraint logic pro-
grams (see [2, 3]) for querying finitely representable databases over the in-
teger order. Logic programs without negation, when they terminate, result
in f.r. answers too. This means that the result of one program, or its nega-
tion, can be used as input for another program. This leads to the notion
of Datalog with stratified negation, or Datalog¬,<z , where negations are al-
lowed, but only w.r.t. the intensional predicates whose computation already
terminated (cf. [1]).

This machinery only works well, however, if the Datalog program termi-
nates. If it does not, the construction collapses. One remedy is to consider
only those Datalog¬,<z -programs whose termination is guaranteed for all
inputs. Such programs often are called safe. Notice that this definition is
semantical in nature.1

Revesz [6] introduced a syntactical notion of safety for Datalog¬,<z -
programs, which guarantees semantical safety. The syntax is remarkably
powerful—queries expressible in this syntax may have non-elementary comp-
lexity—and yet easy (=PTime) to check. As a matter of fact, it was not
clear what kind of (semantically) safe queries, if any, could not be expressed
in this syntax.

In this paper, we ultimately settle this problem by showing that no syn-
tax exists for all semantically safe queries of Datalog¬,<z . In particular,
the syntax introduced in [6] is incomplete. Formally, we show that any re-
cursively enumerable set of Datalog¬,<z -programs either contains infinitely

1To be sure, the notion of safety only makes sense when a specific query evaluation algo-
rithm is fixed. Within this paper, we concentrate on the bottom-up evaluation algorithm.

2

many unsafe programs, or does not contain any program for infinitely many
safe Datalog¬,<z -definable queries.

Of course, our result implies undecidability of safety for Datalog¬,<z as a
whole, i.e., that one cannot decide for a program R whether it is safe. How-
ever, our result hits deeper in that we show impossibility of any syntactical
safety restriction on the Datalog¬,<z -programs that would not simultane-
ously be semantical. As a matter of fact, oftener than not an effective syntax
for an undecidable class of programs does exist. By way of example, consider
the ever popular class PTIME. Again, one cannot generally say whether a
given program is in PTIME. However, it is easy to come up with a syntacti-
cal class of programs that consists of PTIME programs and covers the whole
class PTIME function-wise.2

On the technical side, one of the main results of this paper is that, under
the bottom-up semantics, for any Turing machine one can effectively con-
struct a Datalog¬,<z -program that computes the same function and is safe
whenever the machine is total (Theorem 2.2). Although by appearance, the
result looks similar to the one by P. Revesz (Proposition 2.3 in [7]) that any
Turing-computable function is expressible by a query of Datalog¬,<z , a closer
look reveals that the the two results are altogether different. To emphasize
only one distinction, the programs that express (total) Turing-computable
functions in [7] need not terminate under the bottom-up semantics, hence,
they may not be safe.

1 Definitions

Throughout this paper, we deal with the domain Z of integer numbers to-
gether with the relations = of equality, < of the integer linear order, and
<g of the integer gap order, for all natural numbers g. x <g y means that
x + g < y. The gap orders are first-order expressible using usual order but
the reason to include them is that the resulting first-order language admits
quantifier elimination. Atomic formulas that use equality, order or gap order
only are called pure domain formulas, or atoms. Truth of atoms is defined
the usual way.

Datalog¬,<z -programs also use extra (not pure domain) relation names,
each of a fixed arity. The extra names are of two types. The names of the
first type are extensional, or input, names. They are thought of as the input

2Say, take only the programs that track their own execution time and terminate when
a target polynomial is reached.

3

database.
The names of the second type are intensional, for their meaning is going

to be computed by our program. Further, some of the intensional names are
called output names, and the remaining intensional names are called inter-
nal. The idea is, although we are interested in computing output relations
only, our computation itself may require generating intermediate results that
are temporarily stored in internal names and discarded afterwards.

Then, we want to consider the stratified negation. That is to say, in-
tensional names may be used under negation, but not sooner than their
calculation terminates. Formally, intensional names are ranked by consecu-
tive positive integer numbers with the smallest rank 1, and an intensional
name may be used under negation only in defining an intensional name of a
higher rank.

The syntax of Datalog¬,<z is traditional. A Datalog¬,<z -program, which
we sometimes also refer to as a stratified program, is a finite set of rules.
Each rule has a head and a body. The body can be either empty or be a
sequence of formulas. The head of a rule is an atomic formula of the form
P (x1, x2, . . . , xn) where x1, x2, . . . , xn is a list of pairwise different variables
and P is an intensional name of arity n. The rank of the rule is defined as
the rank of P . Each formula in a body must be of one of the following form:

• an atom or its negation

• an atomic formula of the form P (x1, x2, . . . , xk), where x1, x2, . . . , xk

is a list of variables and P is an extensional name of arity k

• an atomic formula of the form P (x1, x2, . . . , xk), where x1, x2, . . . , xk

is a list of variables and P is a k-ary intensional name whose rank is
less than or equal to the rank of the rule

• a formula of the form ¬P (x1, x2, . . . , xk) where x1, x2, . . . , xk is a list
of variables and P is a k-ary intensional name whose rank is less than
the rank of the rule

So a rule has the form

P (x1, x2, . . . , xn) ←− ϕ1, ϕ2, . . . , ϕm,

where ϕ1, ϕ2, . . . , ϕm are formulas used in its body. Note that we do not
require the variables occurring at the right side to occur at the left side; in

4

case they do not, the interpretation is existential—see a formal definition
below.

A state for a Datalog¬,<z -program R is an assignment of a set of integer
number tuples of proper arity to every extensional name in R. We assume
that all the sets are represented finitely by quantifier-free pure domain for-
mulas. For a state for R, a program R is a mapping which assigns a set
of integer number tuples R(P) of proper arity for each intensional name
P in R. R(P) is defined step-by-step. Steps are enumerated by pairs of
natural numbers. In steps (i, j), the mapping adds new tuples to R(P) for
intensional names P of the rank i.

For a step (i, j), P (a1, a2, . . . , an) is true iff either the tuple a1, a2, . . . , an

was included in P before this step, or P is an extensional name and the tuple
is contained in the set assigned to P by the state. ¬P (a1, a2, . . . , an) is true
iff the rank of the intensional name P is less than i and P (a1, a2, . . . , an) is
false. The first step is (1, 0). Before the first step R(P) are empty for all
the intensional names.

A rule instantiation is defined as a substitution for each variable in the
rule of an integer number. In the step (i, j), if there is no intensional name
of the rank i, the program R stops. Otherwise, let

P (a1, a2, . . . , an) ←− A1, A2, . . . , Am

be a rule instantiation for a rule in R, P of the rank i, and let A1, A2, . . . , Am

be true. Then the tuple a1, a2, . . . , an is added to R(P) if the tuple is not
contained in R(P) yet. If no tuple is added at step (i, j) we proceed to the
step (i + 1, 0). Otherwise we proceed to the step (i, j + 1).

A state is said to be finite for a program R iff the program stops in it.
A program is finite or safe iff all states are finite for it. It can be observed
that every Datalog¬,<z -program without stratification (that is, a program
with intensional symbols of rank 1 only) is safe.

Two safe programs R1 and R2 with the same extensional names are
equivalent in a state iff they have the same output intensional names of the
same arities, and for each output intensional name P , R1(P)=R2(P) in the
state. Two safe programs are equivalent iff they are equivalent in any state.

2 Impossibility of safe syntax

The goal of this section is to prove that there is no effective syntax for safe
programs. Let us outline the idea of the proof. Consider Turing machines

5

in the alphabet {0, 1}, where 0 is used as the blank symbol. A one-way
infinite input tape for such a machine contains finitely many 1’s in the first
few positions, which can be interpreted as a natural number in the unary
notation, and all other cells contain 0. If, in an input, such a machine
stops, it leaves finitely many 1’s on the tape. We may consider the first
uninterrupted string of 1’s left on the tape to be the output natural number
in the unary notation. Then, every machine defines a partial function on
natural numbers.

We want to show that, for any such Turing machine, there exists a strat-
ified program that computes the same function. First problem is, programs
do not work with tapes, they work with database states. Then, these states
are finitely representable, but not necessarily finite. However, we can de-
velop a coding scheme that will represent any natural number in the unary
notation in the form of a finite database state. Perhaps the simplest such
coding is by a unary predicate N as follows.

• if N is assigned a set of a cardinality 0 or > 2, it does not represent a
number

• N assigned a set of cardinality 1 or 2 represents the natural number

max(N)−min(N)

For a natural number n, let n̂ denote its representation in the form of unary
predicate. Consider a stratified program R whose signature includes a sin-
gle extensional predicate INPUT and a single output intensional predicate
OUTPUT . If, for a number n, R terminates when n̂ is assigned to INPUT ,
OUTPUT is assigned a certain set. If this set is m̂ for some m, we say that
R(n) = m. Otherwise we say that R(n) = 0. This way, every such program
R defines a partial function on natural numbers.

Henceforth, we consider programs whose only extensional predicate is a
unary INPUT , and only output intensional predicate is a unary OUTPUT .
However, these programs may have other internal intensional predicates.
The idea of our proof is to show that total Turing machines and safe strat-
ified programs are effectively translatable to each other in the way that
preserves the functions they define on natural numbers. While it is known
that total Turing machines do not have an effective syntax.

Theorem 2.1 For any stratified program R there exists—and can be ef-
fectively constructed—a Turing machine M that defines the same partial
function on natural numbers. If R is safe, the construction gives a total M .

6

Proof: The target program works as follows. Given a number n, it as-
signs n̂ to INPUT and then interprets the computation by R step-by-step,
according to the stepwise definition of semantics of a stratified program. At
each step (i, j), our machine stores the values of all intensional predicates
in the form of first-order pure domain formulas.3 This computation may
never end, and then the result in n is undefined. However, if R terminates
in n̂, our interpretation terminates too, and as a result, we have a value for
OUTPUT in the form of a first-order pure domain formula (note that, since
the pure domain theory admits elimination of quantifiers, this representa-
tion can be translated into a finite representation, although we do not need
this).

Since the pure domain theory is decidable, we can effectively determine
whether this value for OUTPUT represents a number. If it does, we can
determine which number, and then write this number in the unary notation
down to the tape and stop, otherwise, we write 0 in the unary notation to
the tape and stop.

This computation can be carried out by a Turing machine, although
explicitly writing such a machine would be a long boring exercise. Finally, if
R is safe, it always terminates, and particularly it terminates when working
on representations for natural numbers. Hence, for a safe R, the machine is
total. Q.E.D.

The other direction is slightly more technical:

Theorem 2.2 For any Turing machine M there exists—and can be effec-
tively constructed—a stratified program R that defines the same partial func-
tion on natural numbers. If M is total, the construction gives a safe R.

Proof: We want to concentrate on the case when the value assigned to
INPUT does represent a number. However, since we are going to construct a
safe R, the case when it does not represent a number shall also be considered.
It turns out that the program can decide whether INPUT represents a
number from the outset, and then if it does not, simply terminate right
away with no matter which value for OUTPUT—notice that as far as the
numerical function goes it does not matter.

For example, the program may use nullary intensional predicates BAD
3i.e., such formulas that only use constants and the integer (gap)-orders.

7

and GOOD to make this determination as follows:

GOOD ←− INPUT (x),¬BAD
BAD ←− INPUT (x), INPUT (y), INPUT (z),

x 6= y, x 6= z, y 6= z

If GOOD is true, it indicates that the database state does indeed represent
a number. So all the other rules in our program may start with GOOD , and
this guarantees termination for non-numerical inputs right away. We will
omit GOOD from the rules below, just to simplify notation.

Further, we need to select some number to serve as 0. For a numerical
state, we can pick up the minimal element in INPUT as 0. Formally, this
can be done by a stratified program that defines a unary predicate ZERO
to include this minimal number only, however, to simplify notation, we will
simply use 0 as a constant. Similarly, we will use a constant max for the
maximal number in INPUT , and constants 1, 2, . . . , |Q|, where Q is the set
of the internal states of our Turing machine. Clearly, using any of these
constants in the rules is simply an abbreviation for a long routine list of
formulas.

We will also use a binary successor relation S, S(x, y) ⇐⇒ x + 1 = y.
This relation is definable using the gap orders as follows:

S(x, y) ←− x < y,¬(x <1 y)

To simulate computation by a Turing machine, we will use the following
list of internal intensional predicates:

• ternary TAPE . TAPE (i, j, k) indicates that in the step i of our com-
putation the cell number j contains symbol k (0 or 1)

• binary CELL. CELL(i, j) indicates that in the step i of our computa-
tion the cell number j is the current position of the machine

• binary STATE . STATE (i, j) indicates that in the step i of our com-
putation the internal state is j

The initial configuration of the Turing machine M can be explained by the

8

following rules (we assume that the initial state is always 0):

TAPE (i, j, k) ←− i = 0, j > max, k = 0
TAPE (i, j, k) ←− i = 0, j < max, j > 0, k = 1

CELL(i, j) ←− i = 0, j = 0

STATE (i, j) ←− i = 0, j = 0

We can also include the following rule asserting that the cells which are
different from the current position of the machine do not change:

TAPE (i, j, k) ←− S(`, i),TAPE (`, j, k),CELL(`, c), c 6= j

Further simulation of the Turing machine is done according to the rules
of this machine. Generally, a rule is of the form:

(q, k) −→ (s,m, n, a),

and it indicates that when the machine sees the symbol k in the internal
state q, it replaces k in the current cell with s, moves according to m ∈
{left, right, stay}, and, generally, goes into the internal state n. If, however,
the movement prescribed by the rule is left, but the current cell is the
leftmost and no left movement is possible, the machine goes into the internal
state a.

For each such Turing machine rule, we include a set of rules into our
program. For example, let:

(3, 1) −→ (0, left, 2, 7)

be a rule in our Turing machine. It causes inclusion of the following set of
rules into our program:

9

TAPE (i, j, k) ←− S(`, i),TAPE (`, j, 1),CELL(`, j),
STATE (`, 3), k = 0

CELL(i, j) ←− S(`, i),TAPE (`, j, 1),CELL(`, j),
STATE (`, 3), j = 0

CELL(i, j) ←− S(`, i),TAPE (`, j, 1),CELL(`, x),
STATE (`, 3), S(j, x), x 6= 0

STATE (i, j) ←− S(`, i),TAPE (`, p, 1),CELL(`, p),
STATE (`, 3), p = 0, j = 7

STATE (i, j) ←− S(`, i),TAPE (`, p, 1),CELL(`, p),
STATE (`, 3), p 6= 0, j = 2

Let us now define unary predicates LAST and MAX as follows:

LAST (`) ←− STATE (`, x), S(`, p),
¬STATE (p, 0),¬STATE (p, 1), . . . ,
¬STATE (p, |Q|)

MAX (m) ←− LAST (`), n < m,n > 0,TAPE (`, n, 0)

Clearly, LAST defines the last step in the computation by the Turing ma-
chine, if it stops. MAX defines the set of positive integer numbers m such
that on the resulting tape left by our computation, there is at least one
cell that is numbered lower than m and contains a 0. In particular, if the
tape left by our Turing machine contains only 0’s, the predicate is going to
contain all positive integers.

We can finally define OUTPUT as a predicate of the next rank as follows:

OUTPUT (m) ←− m = 0
OUTPUT (m) ←− m > 0,¬MAX (m), S(m,x),MAX (x)

Clearly, the value of OUTPUT is going to be exactly the result of the com-
putation by our Turing machine in our input, of course if this computation
terminates. Since total Turing machines always terminate, our program R
for a total Turing machine M is safe: in an n̂, it computes m̂ such that

10

m = M(n), in a state that does not represent a natural number, it termi-
nates right away. Q.E.D.

Corollary 2.3 There is no effective syntax for safe programs.

Proof: Indeed, existence of such an effective syntax would, by Theo-
rem 2.1, yield a recursive enumeration of total Turing machines such that
every Turing computable total function is computed by a machine in this
enumeration—here we use Theorem 2.2 to assure that every Turing com-
putable total function appears in the enumeration. Such enumeration is
known to be impossible (see [8]). Q.E.D.

References

[1] A. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25:99–128, 1982.

[2] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. 14th
ACM Symp. on Principles of Programming Languages, pages 111–119,
1987.

[3] J. Jaffar and M.J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19–20:503–581, 1994.

[4] P.C. Kanellakis and D.Q. Goldin. Constraint programming and data-
base query languages. In Proc. International Symposium on Theoretical
Aspects of Computer Software (TACS’94), pages 96–120, 1994.

[5] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query lan-
guages. Journal of Computer and System Sciences, 51(1):26–52, August
1995.

[6] Peter Z. Revesz. Safe stratified Datalog with integer order programs.
In Principles and practice of constraint programming—CP ’95 (Cassis,
1995), pages 154–169. Springer, Berlin, 1995.

[7] P.Z. Revesz. A closed form evaluation for Datalog queries with integer
(gap)-order constraints. Theoretical Computer Science, 116(1):117–149,
1993.

[8] H. Rogers. Theory of recursive functions and effective computability.
McGaw-Hill, 1967.

11

