Kink-Kink-AntiKink

> time_0:=time():

> Title:=`Kink-Kink-AntiKink`:

> m:=3: # the total number of basic elements

> v[1,1]:=1: v[1,2]:=0: v[1,3]:=0: v[1,4]:=0: # Kink:

> v[2,1]:=-1: v[2,2]:=-0.55: v[2,3]:=0: v[2,4]:=15: # AntiKink

> v[3,1]:=1: v[3,2]:=0.8: v[3,3]:=0: v[3,4]:=-10: # Kink

> B_p:=SGe_parameters(m,v):

> N:=B_p[0,0]; # the number of solitons

[Maple Math]

> Soliton:=(x,t)->SGe_backlund(x,t,N,B_p);

[Maple Math]

> Nt:=35: Nx:=25:

> L0:=0.85*v[3,4]: L1:=0.85*v[2,4]:

> T0:=0: T1:=(v[2,4]-v[3,4])/abs(v[2,2]):

> st:=time():

> A:=SGe_matrix(Soliton,L0,L1,T0,T1,Nx,Nt):

> matrixplot(A,axes=frame,labels=[t,x,``]);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Plot]

[Maple Math]

> st:=time():

> SGe_animate(Soliton,Title,L0,L1,T0,T1,Nx,Nt);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> st:=time():

> Nt:=50: Na:=11:

> SGe_ribbon(Soliton,Title,L0,L1,T0,T1,Nx,Nt,Na);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> st:=time():

> Np:=10:

> SGe_pendulum(Soliton,Title,L0,L1,T0,T1,Nx,Nt,Np);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> Total_CPU_running_time_(in_seconds):=time()-time_0;

[Maple Math]