Kink-Antikink

> time_0:=time():

> Title:=`Kink-Antikink`:

> m:=1: # the total number of basic elements

> v[1,1]:=1: v[1,2]:=0.2: v[1,3]:=1: v[1,4]:=0: # Kink-Antikink

> B_p:=SGe_parameters(m,v):

> N:=B_p[0,0]; # the number of solitons

[Maple Math]

> Soliton:=(x,t) -> SGe_backlund(x,t,N,B_p);

[Maple Math]

> Nt:=25: Nx:=11:

> Wk:=1/sqrt(1-v[1,2]^2):

> L0:=-(25*Wk-3*Wk): L1:=-L0:

> T0:=-25*Wk/v[1,2]: T1:=25*Wk/v[1,2]:

> st:=time():

> A:=SGe_matrix(Soliton,L0,L1,T0,T1,Nx,Nt):

> matrixplot(A,axes=frame,labels=[t,x,``]);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> st:=time():

> SGe_animate(Soliton,Title,L0,L1,T0,T1,Nx,Nt);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> st:=time():

> Nx:=10: Na:=10:

> SGe_ribbon(Soliton,Title,L0,L1,T0,T1,Nx,Nt,Na);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> st:=time():

> Np:=11:

> SGe_pendulum(Soliton,Title,L0,L1,T0,T1,Nx,Nt,Np);

> CPU_running_time:=time()-st;

[Maple Plot]

[Maple Math]

> Total_CPU_running_time_(in_seconds):=time()-time_0;

[Maple Math]