
Revisiting the Semantics of Interval Probabilistic Logic
Programs

Alex Dekhtyar, Michael I. Dekhtyar

Department of Computer Science Department of Computer Science
University of Kentucky Tver State University

dekhtyar@cs.uky.edu Michael.Dekhtyar@tversu.ru

Abstract. Two approaches to logic programming with probabilities emerged
over time: bayesian reasoning and probabilistic satisfiability (PSAT). The attrac-
tiveness of the former is in tying the logic programming research to the body of
work on Bayes networks. The second approach ties computationally reasoning
about probabilities with linear programming, and allows for natural expression of
imprecision in probabilities via the use of intervals.
In this paper we construct precise semantics for one PSAT-based formalism for
reasoning with inteval probabilities, probabilistic logic programs (p-programs),
orignally considered by Ng and Subrahmanian. We show that the probability
ranges of atoms and formulas in p-programs cannot be expressed as single in-
tervals. We construct the prescise description of the set of models of p-programs
and study the computational complexity if this problem, as well as the problem of
consistency of a p-program. We also study the conditions under which our seman-
tics coincides with the single-interval semantics originally proposed by Ng and
Subrahmanian for p-programs. Our work sheds light on the complexity of con-
struction of reasoning formalisms for imprecise probabilities and suggests that
interval probabilities alone are inadequate to support such reasoning.

1 Introduction

Reasoning with probabilistic information, in the context of logic programming, has two
distinct origins: bayesian reasoning and probabilistic satisfiability. The former is based
on interpreting statements about conditional probability of event A given event B as an
implication of a special kind (if B then the probability of A is equal to p). Among the
logic programming frameworks following this idea are the work of Poole[15], Ngo and
Haddawy [13], and more recently, and in the context of answer set programming, of
Baral, Gelfond and Rushton [2].

The second approach to reasoning with probabilistic information starts with Porba-
bilistic Satisfiability (PSAT), a problem originally formulated by Boole in [1] and “res-
urrected” by Georgakopoulos, Kavvadis and Papadimitriou[8] more than a century later.
PSAT is the problem of determining, whether a set {P (F) = pF }, of assignments of
probabilities to a collectionF = {F} of boolean formulas over atomic events is consis-
tent, i.e., whether there exists a way to assign probabilities to all atomic events in a way
that P (F) = pF for all formulas F in F . Nilsson’s probabilistic logic[14] is based on
PSAT and uses the semantics of possible worlds (world probability functions) to model
probabilities of events. In [8] it is shown that PSAT is NP-complete.

The attractiveness of building logic programming frameworks based on bayesian
reasoning lies in direct relationship to the large body of work on Bayesian networks
and Markov Decision Processes. The attractiveness of PSAT-based logic programs is in
the fact that PSAT has a natural extension to the case of imprecise probabilities. The
importance of imprecise probabilities has been observed by numerous researchers in
the past 10-15 years [16, 3] and lead to the establishment of the Imprecise Probabilities
Project [9].

Interval PSAT is a reformulation of PSAT, in which probability assignments of the
form P (F) = pF are relplaced with inequalities of the form lF ≤ P (F) ≤ uF .
The underlying semantics and the methodology for solving Interval PSAT is the same
as for PSAT. Logic programming frameworks inspired by PSAT consider rules of the
form “P (F) = µ if P (F1) = µ1 and . . . and P (Fn) = µn”. Unlike in bayesian-
inspired frameworks, here “if” is the classical logical implication. Logic programming
formalisms stemming from PSAT, in which probabilities of events are expressed as in-
tervals, have been considered by Ng and Subrahmanian[10,11] and by Dekhtyar and
Subrahmanian[6]. In these frameworks, the fixpoint semantics of formulas, i.e., the set
of possible probability assignments for them, had been represented using a single inter-
val.

In [5] we have established that even for simple logic programs (a subset of pro-
grams considered by [10]), which contain only atomic events in heads and bodies, the
single-interval fixpoint does not adequately describe the exact set of possible probabil-
ity assignments. We have shown that the “real” possible-world semantics is a union of
a set of sub-intervals of [0,1].

In this paper, we extend the results of [5] onto the general case of propositional
interval probabilistic logic programs as defined in [11]. We formally define the propo-
sitional interval probabilistic logic programs of [11]1 in Section 2, where we also show
that the single-interval fixpoint is not precise. In Section 3 we provide the precise de-
scription of the set of models for an interval logic program. In Section 4 we address the
problem of determining if an interval logic program has a model. In Section 5 we study
the problem of when the single-interval fixpoint describes all the models of an interval
logic program precisely, and prove a number of sufficient conditions.

2 Interval Probabilistic Logic Programs

2.1 Syntax

In this section we describe interval Probabilistic Logic Programs of Ng and Subrah-
manian [10, 11]. Let L be some first order language containing infinitely many vari-
able symbols, finitely many predicate symbols and no function symbols. Let BL =
{A1, . . . , AN} be the Herbrand base of L. A basic formula is either an atom from BL

or a conjunction or disjunction of two or more atoms. The set of all basic formulas is
denoted bf(BL). Formulas of the form (B1 ∧ . . . ∧Bn) : µ and (B′

1 ∨ . . . ∨B′
m) : µ′,

1 Ng and Subrahmanian consider in [11] probabilistic logic programs with variables in the prob-
ability intervals. In this paper, we consider only constant probability intervals, leaving the rest
of the syntax from [11] the same.

where B1, . . . , Bn, B′
1, . . . , B

′
m ∈ BL and µ = [l, u], µ′ = [l′, u′] ⊆ [0, 1] are called

p-annotated conjunctions and p-annotated disjunctions respectively.
P-annotated conjunctions and disjunctions represent probabilistic information. Ev-

ery atom in BL is assumed to represent an (uncertain) event or statement. A p-annotated
conjunction A1 ∧ . . . ∧An : [l, u] is read as “the probability of the joint occurrence
of the events corresponding to A1, . . . , An lies in the interval [l, u]”. Similarly,
A1 ∨ . . .∨An : [l, u] is read as “the probability of the occurrence of at least one of
the events corresponding to A1, . . . , An lies in the interval [l, u]”.

Probabilistic Logic Programs (p-programs) are constructed from p-annotated for-
mulas as follows. Let F, F1, . . . , Fn be some basic formulas and µ, µ1, . . . , µn be subin-
tervals of [0, 1] (also called annotations). Then, a p-clause is an expression of the form
F : µ ←− F1 : µ1 ∧ . . . ∧ Fn : µn (if n = 0, as usual, the p-clause F : µ ←− is
referred to as a fact). A Probabilistic Logic Program (p-program) is a finite collection
of p-clauses. In this paper, we call a p-program in which all clauses consist of atoms
from BL only a simple p-program[5]. We also call a p-program in which the heads of
all clauses are atoms from BL a factored p-program. Given a p-program P , we denote
the set of basic formulas found in it as bf(P).

In [10] Ng and Subrahmanian considered factored p-programs. In [12] they consid-
ered a framework, in which variables were allowed in the probability annotations. Our
definition of p-programs allows arbitrary heads of p-clauses, but does does not consider
variable annotations.

2.2 Model Theory

The model theory assumes that in the real world each atom from BL, and therefore each
basic formula, is either true or false. However, exact information about the real world
is not known. The uncertainty about the world is represented in a form of a probabil-
ity distribution over the set of 2n possible worlds. In addition, p-programs introduce
uncertainty about the probability distribution itself.

More formally, given BL, a world probability density function WP is defined as
WP : 2BL → [0, 1],

∑
W⊆2BL WP (W) = 1. Each subset W of BL is considered

to be a possible world and WP associates a point probability with it. W |= A iff
A ∈ W ; W |= A1 ∧ . . . ∧ An iff (∀1 ≤ i ≤ n)W |= Ai and W |= A1 ∨ . . . ∨ An iff
(∃1 ≤ i ≤ n)W |= Ai. We fix an enumeration W1, . . . WM , M = 2N of the possible
worlds and denote WP (Wi) as pi.

Given a function WP , probabilistic interpretation (p-interpretation) IWP is de-
fined on the set of all basic formulas as follows: IWP : bf(BL) → [0, 1], IWP (F) =∑

W |=F WP (W)2. P-interpretations assign probabilities to basic formulas by adding
up the probabilities of all worlds in which they are true. We note that the mapping from
world probability density functions onto p-interpretations is many-to-one: given WP ,
IWP is defined uniquely, but different world probability density functions can yield the
same p-interpretation I .

2 Note, that each world probability density function WP has a unique p-interpretation IWP

associated with it. However, in general, a p-interpretation I can be induced by more than one
world probability density function.

P-interpretations specify the model-theoretic semantics of p-programs. Given a p-
interpretation I , the following definitions of satisfaction are given:
− I |= F : µ iff I(F) ∈ µ;
− I |= F1 : µ1 ∧ . . . ∧ Fn : µn iff (∀1 ≤ i ≤ n)(I |= Fi : µi);
− I |= F : µ ←− F1 : µ1 ∧ . . . ∧ Fn : µn iff either I |= F : µ or I
|= F1 :
µ1 ∧ . . . ∧ Fn : µn.

Now, given a p-program P , I |= P (I is a model of P) iff for all p-clauses C ∈ P ,
I |= C. Let Mod(P) denote the set of all models of p-program P . It is convenient to
view a single p-interpretation I as a point (I(F1), . . . , I(FM)) in M = 2N -dimensional
unit cube EM . Then, Mod(P) can be viewed as a subset of EM . P is called consistent
iff Mod(P)
= ∅, otherwise P is called inconsistent.

2.3 Interval Fixpoint

In this section we give a brief definition of the fixpoint semantics proposed in [10]. The
fixpoint semantics of defined on atomic functions and formula functions.

Let C[0, 1] denote the set of all subintervals of the interval [0, 1]. An atomic func-
tion is a mapping f : BL → C[0, 1]. A formula function h is a mapping h : bf(BL)→
C[0, 1]. Given a set F ⊆ bf(BL) a restricted formula function is a mapping fF : F →
C[0, 1]. Intuitively atomic and formula functions assign probability intervals to atoms
and basic formulas: h(F) = [l, u] can be interpreted as the statement‘‘probability
of formula F lies in the interval [l, u]".

Each formula function hF induces a set LL(hF) of linear inequalities on the prob-
abilities p1, . . . , pM of possible worlds. LL(hF) consists of the following types of in-
equalities:

– lF ≤
∑

Wj |=F pj ≤ uF , for all F ∈ F , hF (F) = [lF , uF];

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

Given a p-program P , two operators, SP and TP are defined. They map formula
functions to formula functions in the following manner. For a basic formula F , SP (h)(F) =
∩MF , where MF = {µ|F : µ ←− F1 : µ1 ∧ . . . ∧ Fn : µn ∈ P, and (∀1 ≤ i ≤
n)(h(Fi) ⊆ µi)}. If MF = ∅ then SP (h)(F) = [0, 1]. The TP operator is defined as

follows: TP (h)(F) = [lF , uF], where lF = min
(∑

Wj |=F pj

)
, subject to LL(SP (h))

and uF = max
(∑

Wj |=F pj

)
, subject to LL(SP (h)).

Intuitively, SP computes the intervals of formulas based on the p-clauses that fired.
However, because basic formulas are not, in general, independent (e.g. such formulas
as a∧ b and a∧ c), the ranges computed by SP may need tightening, performed by TP .
The work of these operators is illustrated on the following example.

Example 1. Consider the p-program P1 shown in Figure 1. Let h(F) = [0, 1] for all
F ∈ bf(BL). SP (h)(a∧ b) = [0, 0.5]∩ [0.5, 1] = [0.5, 0.5]. SP (h)(a∧ c) = [0.5, 0.5];
SP (h)(b ∧ c) = [0.5, 0.5] and SP (h)(a ∧ b ∧ c) = [0.1, 0.2]. To compute TP (h)
we first construct LL(SP (h). Let W1 = {a, b, c}, W2 = {a, b}, W3 = {a, c} and

P1 :
C1 : (a ∧ b) : [0.5, 1]←− .
C2 : (a ∧ b) : [0, 0.5]←− .
C3 : (a ∧ c) : [0.5, 0.5]←− .
C4 : (b ∧ c) : [0.5, 0.5]←− .
C5 : (a ∧ b ∧ c) : [0.1, 0.2]←− .

p1 + p2 = 0.5
p1 + p3 = 0.5
p1 + p4 = 0.5
0.1 ≤ p1 ≤ 0.2
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1
p1, p2, p3, p4, p5, p6, p7, p8 ≥ 0

Fig. 1. Sample p-program P1, and the set of inequalities LL(SP) it induces.

P3 :
C1 : (a ∧ b) : [0.2, 0.5]←− .
C2 : (c ∨ d) : [0.4, 0.6]←− .
C3 : (c∨d) : [0.5, 0.6]←− (a∧b) : [0.2, 0.4].
C4 : (c∨d) : [0.4, 0.5]←− (a∧b) : [0.4, 0.5].

P4 :
C1 : (a ∧ b) : [0.2, 0.5]←− .
C2 : (c ∨ d) : [0.4, 0.6]←− .
C3 : (c∨d) : [0.7, 0.8]←− (a∧b) : [0.2, 0.4].
C4 : (c∨d) : [0.7, 0.8]←− (a∧b) : [0.4, 0.5].

Fig. 2. Fixpoint does not describe exactly all models for p-programs P3 and P4.

W4 = {b, c}. The set of inequalities LL(SP)(h) is shown in Figure 1 (for simplicity
replace constraints of the form a ≤ X ≤ a with X = a).

Combining the first three constraints with the fifth we get 2p1 − 0.5 = p5 + p6 +
p7 + p8 or p1 = 0.25 + p5 + p6 + p7 + p8. Because all pi ≥ 0, min(p1) subject to
the latter constraint is 0.25 (when all p5,p6,p7,p8 = 0). However, this contradicts the
fourth constraint above which says, in particular p1 ≤ 0.2. Thus, LL(h)(SP) has no
solutions.

Example 2. Consider the p-program P2 = P1 − {C5}. The computation of SP (h)
will be the same as in the previous example, except SP (h)(a ∧ b ∧ c) = [0, 1]. Now,
TP (h)(a ∧ b ∧ c) is defined: min(p1) subject to LL(SP)(h) is 0.25 (see previous ex-
ample for derivation). max(p1) = 0.5 and it is reached when p2 = p3 = p4 = 0. Thus,
TP (h)(a ∧ b ∧ c) = [0.25, 0.5].

The set of all formula functions over bf(BL) forms a complete lattice FF w.r.t. the
subset inclusion: h1 ≤ h2 iff (∀F ∈ bf(BL))(h1(F) ⊇ h2(F)). The bottom element
⊥ of this lattice is the function that assigns [0, 1] interval to all formulas, and the top
element � is the atomic function that assigns ∅ to all formulas. Ng and Subrahmanian
show that TP is monotonic [10] w.r.t.FF . The iterations of TP are defined in a standard
way: (i) T 0

P = ⊥; (ii) T α+1
P = TP (T α

P), where α + 1 is the successor ordinal whose
immediate predecessor is α; (iii) T λ

P = �{T α
P |α ≤ λ}, where λ is a limit ordinal. Ng

and Subrahmanian show that, the least fixpoint lfp(TP) of the TP operator is reachable
after a finite number of iterations ([10], Theorem 2). They also show that if a p-program
P is consistent, then I(lfp(TP)), the set of all p-interpretations satisfying lfp(TP)3,
contains Mod(P) ([10] Corollary 3).

3 I |= h iff for all F ∈ bf(BL), I(F) ∈ h(F) and there exists WP , s.t., WP satisfies LL(h)
and I = IWP .

2.4 Fixpoint is not enough

The inverse of the latter statement, however, is not true. We illustrate it on the examples
below. There, and elsewhere in the paper, we use the following conventions concerning
the possible worlds W1, . . . , WM over which world probability functions are defined.
Let BL = {A1, . . . , AN}. The mapping of indexes i of worlds Wi to subsets of BL is
the reverse lexicografical order: W1 = BL, W2 = BL − {AN}, . . . , WM = ∅.

Consider now the p-program P3 in Figure 2.

Proposition 1. There exists a p-interpretation I , such that I |= lfp(TP3), but I
|= P3.

Proof. First, we compute lfp(TP3). On step 1 of the itrative process, SP3(⊥)(a ∧ b) =
[0.2, 0.5] and SP3(⊥)(c ∨ d) = [0.4, 0.6], i.e., clauses C1 and C2 of the program will
fire. The following constraints are present in LL(SP3(⊥)).
0.2 ≤ p1 + p2 + p3 + p4 ≤ 0.5
0.4 ≤ p1 + p2 + p3 + p5 + p6 + p7 + p9 + p10 + p11 + p13 + p14 + p15 ≤ 0.6

From these constraints we can find the upper and lower bounds of TP3 on individual
atoms. For a we get la = min(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = 0.2, while
ua = max(p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) = 1. The probability range
for b, [lb, ub] = [la, ua] = [0.2, 1] due to symmetricity of conjunction of two events.
Similarly, we can discover that lc = ld = 0 and uc = ud = 0.6.

On the second step, no new rules will fire. Indeed, for the p-clause C3 to fire, we
must have T 1

P3
(a∧b) ⊆ [0.2, 0.4], and for C4 to fire, it should be T 1

P3
(a∧b) ⊆ [0.4, 0.5].

But T 1
P3

(a ∧ b) = SP (⊥)(a ∧ b) = [0.2, 0.5], which is a subset of neither [0.2, 0.4] nor
[0.4, 0.5]. Thus, lfp(TP3) = T 1

P3
.

We now show, that there exist a p-interpretation I , such that I |= T 1
P3

but I
|= P3.
Consider a (partially defined) p-interpretation I , such that I(a∧b) = 0.3 and I(c∨d) =
0.4. We complete the construction of I to ensure that it satisfies T 1

P3
as follows.

I(a ∧ b) = p1 + p2 + p3 + p4 = 0.3
I(c ∨ d) = p1 + p2 + p3 + p5 + p6 + p7 + p9 + p10 + p11 + p13 + p14 + p15 = 0.4

Let p1 = p2 = p3 = 0.05, p4 = 0.15, p5 = 0.05, p6 = 0.1, p7 = 0.1, p9 = p10 =
p11 = p13 = p14 = p15 = 0, p12 = 0.15, p16 = 0.3. This assignment satisfies all
constraints in LLSP3(⊥), which means that I |= T 1

P3
.

I |= P3 iff I |= C1, I |= C2, I |= C3 and I |= C4. We can see easilty that I |= C1

and I |= C2: I(a ∧ b) = 0.3 ∈ [0.2, 0.5] and I(c ∨ d) = 0.4 ∈ [0.4, 0.6]. However,
I
|= C3. Indeed, I(a ∧ b) = 0.3 ∈ [0.2, 0.4], i.e., the body of C3 is satisfied, but
I(c ∨ d) = 0.4
∈ [0.5, 0.6], i.e., the head of C3 is not satisfied.

Proposition 1 shows that not all p-interpretations satisfying lfp(TP) satisfy the pro-
gram itself, i.e., Mod(P)
= lfp(TP). As it turns out, there exist p-programs with non-
empty lfp(TP) for which Mod(P) = ∅. One such example is program P4 shown in
Figure 2.

Proposition 2. lfp(TP4) is not empty, while Mod(P4) = ∅.
Proof. First we show that there are p-interpretations satisfying lfp(TP4). Using reason-
ing similar to that in the proof of Proposition 1 we see that on the first step of the fix-
point computation process, clauses C1 and C2 will fire, giving rise to TP4(⊥)(a ∧ b) =

SP4(⊥)(a ∧ b) = [0.2, 0.5] and TP4(⊥)(c ∨ d) = SP4(⊥)(c ∨ d) = [0.4, 0.6]. On the
second step neither C3 nor C4 will fire as TP4(⊥)(a ∧ b) = [0.2, 0.5]
⊆ [0.2, 0.4] and
TP4(⊥)(a ∧ b) = [0.2, 0.5]
⊆ [0.4, 0.5]. This means lfpTP4

= T 1
P4

= TP4(⊥), which
is not empty and thus contains satisfying p-interpretations.

Now we show that Mod(P4) = ∅. Let I |= P4 be a p-interpretation. I |= P4, means
I |= C1, I |= C2, I |= C3 and I |= C3. From I |= C1 we obtain I(a ∧ b) ∈ [0.2, 0.5].
From I |= C2 we obtain I(c∨d) ∈ [0.4, 0.6]. Now, we observe that I(a∧b) ∈ [0.2, 0.5]
implies that either I(a ∧ b) ∈ [0.2, 0.4) or I(a ∧ b) ∈ (0.4, 0.5] or I(a ∧ b) = 0.4.
Consider each case separately.

If I(a ∧ b) ∈ [0.2, 0.4), then I satisfies the body of C3. Therefore, it must be the
case that I(c ∨ d) ∈ [0.7, 0.8]. However, because I |= C2, I(c ∨ d) ∈ [0.4, 0.6] which
leads to a contradiction. Similarly, I(a∧ b) ∈ (0.4, 0.5] makes the body of C4 satisfied,
and thus I(c ∨ d) must be in [0.7, 0.8] contradicting the fact that I |= C2. Finally, if
I(a ∧ b) = 0.4 then the bodies of both C3 and C4, and hence I must satisfy their
(identical) heads, leading again to I(c ∨ d) ∈ [0.7, 0.8], which contradicts I |= C2.
Thus, no p-interpretation I can satisfy P4.

Looking at the proofs of both propositions above we see that the reason for the
“bad” behavior of lfp(TP) lies in the computation of the SP operator, namely, in the
determination when p-claues fire. By definition of SP , a p-clause C fires if current val-
uation for each basic formula in the body of the clause is a subinterval of its annotation
in the clause. Consider, for example a clause C : F : µ ←− G : µ′ and some formula
function (valuation) h, such that h(G)
⊆ µ′ but h(G) ∩ µ′
= ∅. This clause will not
fire. However, any p-interpretation I |= C such that I(G) ∈ h(G) ∪ µ′, satisfies the
body of the clause, and thus, must satisfy its head, i.e., we must have I(F) ∈ µ. This
extra restriction on the probability range of F is not captured by the SP computation.

3 Possible Worlds Semantics

We ask ourselves: given a p-program P , how do we give an exact description of Mod(P)?
In [5] we have answered this question of simple p-programs, i.e., p-programs with only
atoms in the program clauses. In this section we extend the new semantics to the full
case of p-programs.

Definition 1. Let P be a p-program over the Herbrand base BL = {A1, . . . , AN}, and
letW = (W1, . . . , WM), M = 2M be an enumeration of all subsets of BL. With each
Wj , 1 ≤ j ≤ M we associate a variable pj with domain [0, 1]. Let C be a p-clause in
P of the form F : [l, u]←− F1 : [1, u1] ∧ . . . ∧ Fn : [ln, un].

The family of systems of inequalities induced by C, denoted INEQ(C) is defined
as follows:

– n = 0 (C is a fact). INEQ(C) =
{
l ≤∑

Wj |=F pj ≤ u
}

.

– n ≥ 1 (C is a rule). INEQ(C) = T (C) ∪ F (C);
T (C) =

{{
l ≤∑

Wj |=F pj ≤ u; li ≤
∑

Wj |=Fi
pj ≤ ui|1 ≤ i ≤ k

}}
;

F (C) =
{{∑

Wj |=Fi
pj < li

}
|1 ≤ i ≤ k

}
∪
{{∑

Wj |=Fi
pj > ui

}
|1 ≤ i ≤ k

}
.

Let P = {C1, . . . , Cs}. Then, INEQ(P) is defined as follows:
INEQ(P) = {α1 ∪ . . . ∪ αs|αi ∈ INEQ(Ci), 1 ≤ i ≤ s}

Informally, INEQ(P) is constructed as follows: for each p-clause C in the program
we select the reason, why it is true. The reason/evidence is either the statement that the
head of the clause is satisfied, or that one of the conjuncts in the body is not. The set
INEQ(P) represents all possible systems of such evidence/restrictions on probabilities
of basic formulas. Solutions of any system of inequalities in INEQ(P) satisfy every
clause of P . Of course, not all individual systems of inequalities have solutions, but
INEQ(P) captures all the systems that do, as shown in the following lemma and
theorem.

Lemma 1. Let C be a p-clause and I be a p − interpretation (both over the same
Herbrand Base BL). Then I |= C iff there exists a world probability function WP , such
that I = IWP and {pj = WP (Wj)|Wj ⊆ BL} ∈ Sol(α) for some α ∈ INEQ(C).

Theorem 1. A p-interpretation I is a model of a simple p-program P iff there exists
a world probability function WP , such that I = IWP , and a system of inequalities
α ∈ INEQ(P) such that P = {pj = WP (Wj)|Wj ⊆ BL} ∈ Sol(α).

This leads to the following description of Mod(P):

Corollary 1. Mod(P) =
⋃

α∈INEQ(P){IWP |WP ∈ Sol(α)}
Let Rules(P) and Facts(P) denote the sets of p-clauses from P with non-empty

and empty bodies respectively. Let f(P) = |Facts(P)| and r(P) = |Rules(P)|.
Finally, let k(P) be the maximum number of basic formulas in a body of a rule in P .

The solution of each system α ∈ INEQ(P) is a convex M − 1-dimensional4 (in
general case) polyhedron. Given a solution WP of some α ∈ INEQ(P), IWP is
obtained via a linear transformation. Because linear transformations preserve convexity
of regions, we can make the following statement about the geometry of the set Mod(P).

Corollary 2. Given a p-program P over the Herbrand base BL = {A1, . . . , AN},
Mod(P) is a union of S ≤ (2k(P)+1)r(P), not necessarily disjoint, convex polyhedra.
Each polyhedron has a dimensionality of at most M − 1 = 2N − 1.

This corollary provides an exponental, in the size of the p-program, upper bound
on the number of disjoint components of Mod(P). In [5] we constructed a simple p-
program P with 2N + 1 clauses and k(P) = 1, whose Mod(P) is a collection of 2N

disjoint N -dimensional parallepipeds. This shows that the exponential bound cannot be
substantially decreased.

The semantics of p-programs is closely connected to Interval PSAT. As mentioned
above, each system of inequalities in INEQ(P) is constructed by selecting one for-
mula from each clause (either the head or from the body) and assigning it an interval:
[l, u] for the head; [0, li) or (ui, 1] for the formula Fi from the body. Theorem 1 showed
that any assignment of point probabilities to the atoms, that satisfies these constraints is

4 Because p1 + . . .+pM = 1 is present in every α ∈ INEQ(P), the dimensionality of Sol(α)
cannot be more than M − 1.

a model of P . At the same time, the set {F : µ} of annotated formulas for which satis-
fying p-interpretations are to be found is an instance of Interval PSAT. Thus, an instance
of Interval PSAT is associated with each set of inequalities in INEQ(P). We note that
the sets of solutions for individual systems from INEQ(P) are not disjoint, however,
each system can contain unique solutions. Thus, one way of computing Mod(P) is to
solve |INEQ(P)| Interval PSAT problems.

4 Consistency Problem

The consistency problem for p-programs is defined as follows: given a p-program P ,
check whether P has a model, i. e. Mod(P)
= ∅. Let CONS-P= {P |Mod(P)
= ∅}.
Theorem 2. The set CONS-P is NP-complete.

Proof. Upper bound. Let P be a p-program, B1, . . . , Br be all basic formulas of P
Then Mod(P)
= ∅ iff there exist such probabilitues b1, . . . , br of B1, . . . , Br that
(i) the system of linear equations and inequalities EQ(P):

–
∑

Wj |=Bi
pj = bi, for i = 1, . . . , r,

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

has a solution WP = {p′1. . . . , p′M} defined the interpretation IWP ∈Mod(P).
To prove the upper bound, we use the following lemma from [7] (which, in turn,

cites [4]. Similar statement is also found in [8]).

Lemma 2. If a system of r linear equations and/or inequalities with integer coefficients
each of length at most l has a nonnegative solution, then it has a nonnegative solution
with at most r entries positive, and where the size of each member of the solution is
O(rl + r log r).

Based on this lemma we obtain the following “small model” theorem.

Lemma 3. p-program P including r different basic formulas is consistent iff there ex-
ists a probability distribution WP on possible worlds with no more than r + 1 nonzero
probabilities such that IWP |= P .

Let the longest number in annotations of P have length l. Then the following non-
deterministic procedure allows us to check whether Mod(P)
= ∅.
1) Guess for each Bi(i = 1, . . . , r) it’s probability bi ∈ [0, 1] of the length O(rl +
r log r).
2) Guess a probability distribution WP with no more than r + 1 positive probabilities
pi1 , . . . , pir+1 of the length O(rl + r log r) and check that WP is a solution of the
system EQ(P).
3) If IWP |= P retur n ”Yes”.

From the lemmas above it follows that this algorithm runs in nondeterministic time
bounded by a polynomial of |P |.

Lower bound. We show that 3-CNF ≤P CONS-P. Let Φ = C1 ∧ . . . Cm be a 3-
CNF over the set of boolean variables V ar = {x1, . . . , xn}. Let each clause Cj , j =
1, . . . , m, include 3 literals l1j , l

2
j , l

3
j . Define for each literal l an annotated atom α(l) as

follows: if l = x ∈ V ar then α(l) = x : [0.5, 1], if l = ¬x then α(l) = x : [0, 0.5]. Let
BL = V ar∪{Cj | j = 1, . . . , m}∪ {Φ}. We include in p-program P (Φ) the following
p-clauses. (f1) : Φ : [1.1]← .
(fcj) : Cj : [0, 0.1]← . (j = 1, . . . , m)
(fxi) : xi : [0, 1]← . (i = 1, . . . , n)
(rcj) : Cj : [0.9, 1]← α(l1j) ∧ α(l2j) ∧ α(l3j). (j = 1, . . . , m).
(rfi) : Φ : [0, 0]← xi : [0.5, 0.5]. (i = 1, . . . , n)

It is easy to see that P (Φ) can be constructed from Φ in polynomial time. Now the
theorem follows from the following proposition.

Proposition 3. Φ ∈ 3-CNF ⇐⇒ P (Φ) ∈ CONS-P.

Proof. Suppose that Φ ∈ 3-CNF and σ : V ar → {T, F} is such truth substitution that
σ(Φ) = T . Then for each j = 1, . . . , m there is such kj , 1 ≤ kj ≤ 3, that σ(lkj

j) =
T . Define an interpretation I as follows: I(Φ) = 1, I(Cj) = 0 for j = 1, . . . , m,
I(xi) = 0 if σ(xi) = T and I(xi) = 1 if σ(xi) = F, i = 1, . . . , n. Then it is easy
to see that all facts (f1), (fcj), (fxi) and all rules (rfi) are valid on I . Consider now

any rule (rcj). Its body includes the annotated atom α(lkj

j). If l
kj

j = x ∈ V ar then

α(lkj

j) = x : [0.5, 1]. By the choice of l
kj

j we have that

σ(x) = T, I(x) = 0 and therefore I
|= α(lkj

j). If l
kj

j = ¬x then α(lkj

j) = x :

[0, 0.5]. Again, by the choice of l
kj

j we hav e that σ(x) = F and I(x) = 1 and therefore

I
|= α(lkj

j). We see that in the both cases I
|= Body(rcj) and hence, I |= (rcj).
Therefore, I |= P (Φ).

Now suppose that there is model I of P (Φ). Then fact (f1) implies I(Φ) = 1, and
it follows due to rules (rfi) that I(xi)
= 0.5 for i = 1, . . . , n. For x ∈ Var we define
σ(x) = T if I(x) < 0.5 and σ(x) = F if I(x) > 0.5. Show now that each clause Cj ,

j = 1, . . . , m, includes such literal l
kj

j that σ(lkj

j) = T. Let us fix any j. The fact (fcj)
implies that inequality I(Cj) ≤ 0.1 holds. Then the head Cj : [0.9, 1] of the rule (rcj)
is not valid on I . Hence, there is an annotated atom in the body of (rcj) which does not

hold on I . Let it be atom α(lkj

j). If l
kj

j = x for some x ∈ Var then α(lkj

j) = x : [0.5, 1].

Since I
|= x : [0.5, 1], we get that I(x) < 0.5 and σ(lkj

j) = σ(x) = T . If l
kj

j = ¬x for

some x ∈ Var then α(lkj

j) = x : [0, 0.5]. Since I
|= x : [0, 0.5], we get that I(x) > 0.5.

Then σ(x) = F and σ(lkj

j) = ¬σ(x) = T .
A consistent p-program P entails a formula F : [l, u] if for each I ∈ Mod(P)

I |= F : [l, u]. The entailment problem is, thus, expressed as follows: given a consistent
P and a formula F : [l, u], decide if P entails F : [l, u]?

Let EQ1(P, F) = EQ(P) ∪ {∑Wj |=F pj < l} and EQ2(P, F) = EQ(P) ∪
{∑Wj |=F pj > u}. Then it easy to see that P does not entail F : [l, u] iff EQ1(P, F) is
solvable or EQ2(P, F) is solvable. Therefore we get the following complexity bounds
for the entailment problem.

P5 :
a : [0.2, 0.4]←− .
b : [0.3, 0.7]←− .
c : [0.8, 0.9]←− b : [0.6, 0.9], a : [0.5, 1].

P6 :
a : [0.2, 0.6]←−.
b : [0.3, 0.7]←−.
c : [0.8, 0.9]←− (a ∧ b) : [0.3, 0.6].

Fig. 3. Programs P5 and P6 show that semi-strictness is not the right condition for general p-
programs.

Theorem 3. The enailment problem is co-NP-complete.

5 When Fixpoint is enough?

In this section we study subclasses of p-programs for which simpler procedures for de-
termining Mod(P) exist. In particular, we ask ourselves a question of when Mod(P),
as defined here, and lfp(TP), as defined in [11] coincide. We then address the problem
of complexity of detecting that Mod(P) = I(lfp(TP)). First, we consider the problem
of Mod(P) = lfp(TP) for the case of simple p-programs.

Definition 2. A simple p-program P is called semi-strict if it satifies the following con-
dition:
(�) For all atoms A ∈ BL, and for each pair µ ∈ haP (a) and ν ∈ baP (a) either µ ⊆ ν
or µ ∩ ν = ∅.

Intuitively, a simple p-program is called semi-strict if for all atoms their annotations
in the heads of the rules are either subintervals of annotations in the bodies or do not
intersect with them.

Theorem 4. If P is a simple semi-strict p-program, then Mod(P) = I(lfp(TP)).

Theorem 5. Semi-strictness of a simple p-program P can be checked in time O(|P |2).
Semi-strictness is a syntactic condition on simple p-programs, that can be checked

in time, quadratic, in the size of the p-program in a straightforward manner. This makes
it an attractive condition to use in general case. However, two drawbacks make it impos-
sible. First, this is a sufficient, but not necessary condition, and second, for programs
with non-atomic formulas, semi-strictness does not imply Mod(P) = I(lfp(TP)).
The following two examples illustrate these drawbacks.

Example 3. To show that semi-strictness is not a necessary condition, consider p-program
P5 from Figure 3. First, we note that lfp(TP5) assigns intervals [0.2, 0.4], [0.3, 0.7] and
[0, 1] to atoms a, b and c respectively. We can also see that the body of the third clause
of P5 is unsatisfiable given the first two clauses, because the intervals for a, [0.5, 1] in
the clause and [0.2, 0.4] from the first clause, do not intersect. Therefore, Mod(P5) will
not differ from lfp(TP5). At the same time, we note that P5 is not semi-strict, because
for b the annotation of the head of the second clause, [0.3, 0.7], and the annotation in
the body of the third clause, [0.6, 0.9] overlap.

Example 4. Consider the p-program P6 from Figure 3. P6 is semi-strict by definition 2.
But we can show that I(lfp(TP)) and Mod(P) differ. Indeed, because the constraints
on the probabilities of a and b from the first two p-clauses do not entail the [0.3, 0.6]
constraint on the probability of a∧b, this rule does not fire, and therefore lfp(TP)(c) =
[0, 1]. In particular, a p-interpretation I , s.t., I(a) = 0.6, I(b) = 0.7, I(c) = 0.2 is in
I(lfp(TP)). At the same time, if I(a) = 0.6 and I(b) = 0.7, then I(a∧ b) ∈ [0.3, 0.6],
and therefore, in the thrid rule, the head must be satisfied, but 0.2
∈ [0.8, 0.9].

It turns out that it is possible to specify a sufficient condition in the general case.
However, this is no longer a syntactic condition.

Definition 3. Let P be a p-program and let P ′ be the result of removing from P all
p-clauses whose heads are satisfied by lfp(TP). A p-program P is called strict if the
following condition holds:

For each clause C : F : µ ←− F1 : µ1 ∧ . . . Fn : µn in P ′, there exists an
index 1 ≤ i ≤ n, such that lfp(TP)(Fi) ∩ µi = ∅.

Theorem 6. If a p-program P is strict, then Mod(P) = I(lfp(TP)).

Proof.
We know that Mod(P) ⊆ I(lfp(TP)). Suppose now, I ∈ I(lfp(TP)). We show
that (∀C : F : µ ←− F1 : µ1 ∧ . . . Fn : µn ∈ P)I |= C. If C ∈ P − P ′, then
I(F) ∈ lfp(TP)(F) ⊆ µ, and therefore, I |= F : µ. If C ∈ P ′, then, because C is
strict, there exists such index i, that lfp(TP)(Fi) ∩ µi = ∅. Then I
|= Fi : µi, and
therefore I
|= F : µ←− F1 : µ1 ∧ . . . Fn : µn and I |= C.

For the class of simple p-programs, strictness is a necessary condition.

Theorem 7. For a simple p-program P , Mod(P) = I(lfp(TP)) iff P is strict.

The following example shows that strictness is not a necessary condition for non-
simple programs.

Example 5. Consider the following p-program P7:
a : [0.6, 0.8]←−.
b : [0.6, 0.7]←−.
d : [0.2, 0.3]←− .
c : [0.4, 0.5]←− (a ∧ b) : [0.65, 0.7]∧ (b ∨ d) : [0.5, 0.6].
lfp(TP) assigns intervals [0.2, 0.7] and [0.6, 1] to a ∧ b and b ∨ d respectively, and
therefore, P7 is not strict. However, there exists no p-interpretation I which satisfies the
first three rules and the body of the fourth rule: I(b∨d) ∈ [0.5, 0.6] implies, I(b∨d) =
0.6 and I(b) = 0.6, while I(a ∧ b) ∈ [0.65, 0.7] implies that I(b) ≥ 0.65. Therefore,
Mod(P) coincides with I(lfp(TP)).

6 Related Work and Conclusions

A survey of different approaches to probabilistic logic programming can be found in
[6] and [5]. This paper studies the precise semantics of a logic programming language

for reasoning about the interval probabilities of events and their combinations. This lan-
guage, proposed by Ng and Subrahmanian[11] is a natural extension of Interval Prob-
abilistic Satisfiability problem PSAT [8]: an instance of Interval PSAT is a p-program,
in which all rules have no bodies. We show that for this, relatively simple language, the
class of satisfying models (probabilistic interpretations) has a complex description: it is
a union of a number of (closed, open, semiopen) intervals, obtained, solving an array of
Interval PSAT problems. On the positive side, our results show how to compute the set
of models of a p-program precisely. On the negative side, the complexity of the descrip-
tion and the computational complexity of the problem itself suggest that intervals may
be inadequate as the means for specifying imprecision in probabilistic assessments.

References

1. G. Boole. (1854) The Laws of Thought, Macmillan, London.
2. Chitta Baral, Michael Gelfond, J. Nelson Rushton. (2004) Probabilistic Reasoning With

Answer Sets, in Proc. LPNMR-2004, pp. 21-33.
3. Luis M. de Campos, Juan F. Huete, Serafin Moral (1994). Probability Intervals: A Tool

for Uncertain Reasoning, International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems (IJUFKS), Vol. 2(2), pp. 167 – 196.

4. V.Chvátal. (1983) Linear Programming. W. Freeman and Co., San Fancisco, CA.
5. A. Dekhtyar, M.I. Dekhtyar. (2004) Possible Worlds Semantics for Probabilistic Logic Pro-

grams, in Proc., International Conference on Logic Programming (ICLP)’2004, LNCS, Vol.
3132, pp. 137-148.

6. A. Dekhtyar and V.S. Subrahmanian (2000) Hybrid Probabilistic Programs. Journal of
Logic Programming, Volume 43, Issue 3, pp. 187 – 250 .

7. R. Fagin J. Halpern, and N. Megiddo. (1990) A logic for reasoning about probabilities,
Information and Computation, vol. 87, no. 1,2, pp. 78-128.

8. G.Georgakopoulos, D. Kavvadias, C.H. Papadimitriou. (1988) Probabilistic Satisfiability,
Journal of Complexity, Vol. 4, pp. 1-11.

9. H.E. Kyburg Jr. (1998) Interval-valued Probabilities, in G. de Cooman,
P. Walley and F.G. Cozman (Eds.), Imprecise Probabilities Project,
http://ippserv.rug.ac.be/documentation/interval prob/interval prob.html.

10. R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, Information and
Computation, 101, 2, pps 150–201, 1993.

11. R. Ng and V.S. Subrahmanian. A Semantical Framework for Supporting Subjective and
Conditional Probabilities in Deductive Databases, JOURNAL OF AUTOMATED REASON-
ING, 10, 2, pps 191–235, 1993.

12. R. Ng and V.S. Subrahmanian. (1995) Stable Semantics for Probabilistic Deductive
Databases, INFORMATION AND COMPUTATION, 110, 1, pps 42-83.

13. L. Ngo, P. Haddawy (1995) Probabilistic Logic Programming and Bayesian Networks, in
Proc. ASIAN-1995, pp. 286-300.

14. N. Nilsson. (1986) Probabilistic Logic, AI Journal 28, pp 71–87.
15. D. Poole (1993). Probabilistic Horn Abduction and Bayesian Networks. Artificial Intelli-

gence, Vol. 64(1), pp. 81-129.
16. Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,

1991.

