
Possible Worlds Semantics for Probabilistic Logic

Programs

Alex Dekhtyar, Michael I. Dekhtyar

Department of Computer Science Department of Computer Science

University of Kentucky Tver State University

dekhtyar@cs.uky.edu Michael.Dekhtyar@tversu.ru

Abstract. In this paper we consider a logic programming framework for rea-

soning about imprecise probabilities. In particular, we propose a new semantics,

for the Probabilistic Logic Programs (p-programs) of Ng and Subrahmanian. P-

programs represent imprecision using probability intervals. Our semantics, based

on the possible worlds semantics, considers all point probability distributions that

satisfy a given p-program. In the paper, we provide the exact characterization of

such models of a p-program. We show that the set of models of a p-program can-

not, in general case, be described by single intervals associated with atoms of the

program. We provide algorithms for efficient construction of this set of models

and study their complexity.

1 Introduction

Probabilities quantize our knowledge about possibilities. Imprecise probabilities rep-

resent our uncertainty about such quantization. They arise from incomplete data or

from human unsureness. They occur in the analyses of survey responses, in the use

of GIS data, and risk assessment, to cite a few application domains. The importance of

imprecise probabilities has been observed by numerous researchers in the past 10-15

years [14, 3] and lead to the establishment of the Imprecise Probabilities Project [6].

The appeal of standard, or point, probability theory is its clarity. Given the need for

imprecision, there are many models: second-order distributions, belief states or lower

envelopes, intervals, and others. Among them, probability intervals as the means of rep-

resenting imprecision are the simplest extension of the traditional probability models.

Even then, a variety of different explanations of what it means for a probability of an

event � to be expressed as an interval
� �������
	�� ������

have been proposed in the past

decade and a half [14, 2, 15, 3]. Among them, the possible worlds approach introduced

for probability distributions by De Campos, Huete and Moral [3] and extended to Kol-

mogorov probability theory by Weichselberger [15] is, probably, the most appealing

from the point of view of the origins of imprecision. According to [3, 15], there is a

single true point probability distribution underlying a collection of random variables

or events. The imprecision, expressed in terms of probability intervals stems from our

inability to establish what this true distribution is. Thus, interval probabilities are con-

straints on the set of possible point probability distributions that can be true.

Previous logic programming frameworks addressing the issue of imprecision in

known probabilities [8, 7, 9, 4, 5] had taken similar approaches to interpreting proba-

bility intervals, but have stopped short of considering precise descriptions of sets of

point probabilities as the semantics of probabilistic logic programs. In this paper, we

seek to extend one such logic programming framework, Probabilistic Logic Programs

(p-programs), introduced by Ng and Subrahmanian[9], to capture the exact set of point

probabilities that satisfy a p-program.

The main contributions of this paper are as follows. First, we describe the possi-

ble worlds semantics for a simple logic programming language in which probability

intervals are associated with each atom in a program (simple p-programs) (Section 2).

The syntax of the language and its model theory are from [9], however, we show that

the fixpoint semantics described there does not capture precisely the set of all point

probability models of a program (Section 2.2). We then proceed to describe this set

of models formally (Section 3.1), and provide an explicit construction for it (Section

3.2), complete with algorithms for implementing this constructions. We show that as-

sociating single intervals with atoms of p-programs is not sufficient to capture their

model-theoretic semantics: one has to consider unions of open, closed and semi-closed

intervals. We also show that while the size of such description of the set of models of a

simple p-program can be, in the worst case exponential in the size of the program, our

algorithm GenModT for its construction, works in an efficient manner.

2

2 Probabilistic Logic Programs

In this section we describe a simplified version of the Probabilistic Logic Programs

of Ng and Subrahmanian [9]. Let � be some first order language containing infinitely

many variable symbols, finitely many predicate symbols and no function symbols. Let�������	��
 ������� �����
be the Herbrand base of � . A p-annotated atom, is an expression�����

where
�������

, and
��� � � ��� � 	 � � �����

.

P-annotated atoms represent probabilistic information. Every atom in
� �

is as-

sumed to represent an (uncertain) event or statement. A p-annotated atom
��� � � ��� �

is read as “the probability of the event corresponding to
�

to occur (have oc-

curred) lies in the interval
� � ��� �

”. Probabilistic Logic Programs (p-programs) are

constructed from p-annotated formulas as follows. Let
� � ��
 ����� ���

be some atoms

and
� � ��
 ������ � � �

be subintervals of
� � �����

(also called annotations). Then, a simple p-

clause is an expression of the form
�!�"�$#&%'�(
)���"
+* ����� *,���-�"� �

(if . � �
,

as usual, the p-clause
�/�0�1#&%

is referred to as a fact). A simple Probabilistic Logic

Program (p-program) is a finite collection of simple p-clauses.

2.1 Model Theory and Fixpoint Semantics

The model theory assumes that in real world each atom from
� �

is either true or false.

However, the observer does not have exact information about the real world, and ex-

presses his/her uncertainty in a form of a probability range. Given
���

, a world probabil-

ity density function 2,3 is defined as 243 �6587 9;: � ������
, <$=;> 7 9 243@?BADC � �

. Each

subset A of
���

is considered to be a possible world and 2,3 associates a point proba-

bility with it. A probabilistic interpretation (p-interpretation) 3 is defined on
���

as fol-

lows: 3 �6� � : � � �����
, 3@? � C � <FE�G =$2,3H?IADC . P-interpretations assign probabilities

to individual atoms of
� �

by adding up the probabilities of all worlds in which a given

atom is true. P-interpretations specify the model-theoretic semantics of p-programs.

Given a p-interpretation 3 , the following definitions of satisfaction are given:% 3&J �F�D�K�
iff 3@? � C �L� ;% 3&J �F�M
����"
N* ���� *L���;��� �

iff ?PO �MQSRTQ .UCV?I3;J �W��XN��� X C ;
3

% 3�J � � � �/#&% ��
 �T�"
�* ���� *1�����T� �
iff either 3�J � � � �

or 3 �J � �M
1�
�"
N* ����� *;���&�K� �

.

Now, given a p-program � , 3 J � � iff for all p-clauses � � � 3 J � � . Let
����� ?	��C denote the set of all p-interpretations that satisfy p-program � . It is convenient

to view a single p-interpretation 3 as a point ? 3H? �
 C �������� 3@? � � C C in
 -dimensional unit

cube �
�

. Then,
����� ?���C can be viewed as a subset of �

�
. � is called consistent iff

����� ?	��C ��� � , otherwise � is called inconsistent.

Fixpoint semantics of simple p-programs is defined in terms of functions that as-

sign intervals of probability values to atoms of
� �

. An atomic function is a mapping
� �K���4%@:�� � ������

where
� � ������

denotes the set of all closed subintervals of
� ������

. Gen-

erally, an atomic function
�

describes a closed parallelepiped in
 -dimensional space:

a family of p-interpretations ��? � C ��� 3HJ ?PO ���)�M� CV?I3@? � C � � ? � C C � is associated.

The set of all atomic functions over
�M�

forms a complete lattice ��� w.r.t. the

subset inclusion:
�
 Q ���

iff ?PO � � ��� CV? �
 ? � C�� ��� ? � C C . The bottom element � of

this lattice is the atomic function that assigns
� � � ���

interval to all atoms, and the top

element � is the atomic function that assigns

to all atoms.

Given a simple p-program � the fixpoint operator ��� � ��� %H: ��� is defined

as ��� ? � CV? � C �! "� E � where
� E � �� J � � � # %��(
 � �"
 * ���� * ����� � ���

� and ?PO �;Q/R(Q .UC�? � ? � X C 	 � X C � � Ng and Subrahmanian show that this operator

is monotonic [9]. The iterations of � � are defined in a standard way: (i) �$#� � � ; (ii)

�$%'&

� � � � ?(� %� C , where
�*) �

is the successor ordinal whose immediate predecessor

is
�

; (iii) �,+� �.- � � %� J �SQ0/ �
, where

/
is a limit ordinal. Ng and Subrahmanian show

that, the least fixpoint 1 �32 ?(�4�NC of the ��� operator is reachable after a finite number

of iterations ([9], Lemma 4). They also show that if a p-program � is consistent, then

��?�1 �32 ?(��� C C contains
����� ?���C ([9] Theorem 5, Claim (i)).

2.2 Fixpoint is not enough

At the same time, the inverse of the last statement, is not true, as evidenced by the

following examples. First, consider p-program �
 shown in Figure 1.

Proposition 1. There exists a p-interpretation 3 s. t. 3 � ��?�1 �32 ?(���65 C C but 3 �J � �
 .
4

����� ��� �
	���� �������� (1)
� ��� ��� ��	���� ��������� (2)
� ��� ��� ��	���� ������������� ��� ��	���� ����� (3)
� ��� ��� �	���� ������������� ��� ��	���� ���� (4)

Program �!

����� ��� �
	���� �������� (1)
� ��� ��� ��	���� ��������� (2)
� ��� ��� "�	���� #������������ ��� ��	���� ����� (3)
� ��� ��� "�	���� #������������ ��� ��	���� ���� (4)

Program �%$

Fig. 1. Sample P-programs.

Proof. It is easy to see that neither rule (3) nor rule (4) will fire during the computation

of the least fixpoint. Indeed, �

�35 ? � C � � �6� 5 ���6� & �

and �

�35 ? � C � � �0� 5 � �0� ' �

based on

clauses (1) and (2). However, at the next step, as
� �0� 5 � �0� & � �	 � �6� 5 � �0� (�

, rule (3) will not

fire and as
� �0� 5 � �6� & � �	 � �0� (� �0� & �

, rule (4) will not fire. Therefore, 1 �32 ?�� � 5 C � �
� 5 .
Now, consider p-interpretation 3 , such that 3H? � C � �6� 5

and 3H? � C � �6� (�'
. Clearly,

3 � ��?�1 �32 ?(���65 C C . However, 3 �J � �
 . Indeed, as 3@? � C � �0� 5 � � �0� 5 � �0� (�
, 3 satisfies

the body of rule (3). Then 3 must satisfy its head, i.e., 3@? � C � � �0� 5 � �6� (�
. However,

3@? � C � �0� (�' �� � �6� &���6�)' �
, and therefore rule (3) is not satisfied by 3 .

We note that the fixpoint of �
 is defined but it is not tight enough to represent

exactly the set of satisfying p-interpretations. It is also possible for a p-program to have

a well-defined fixpoint but be inconsistent. Consider p-program � � from Figure 1.

Proposition 2. 1. 1 �32 ?(� ��* C � �
��* . In particular, 1 �32 ?�� ��* CV? � C � � �6� 5 � �0� & �
and 1 �32 ?���� * C�? � C � � �6� (� �0� ' �

.

2.
����� ?	� � C �

Proof. The first part is similar to the proof of Proposition 1. To show that
����� ?�� � C �

consider some p-interpretation 3 such that 3&J � � � . Let 3H? � C � 2 . As
2 � 1 �32 ?���� * C�? � C �

� �0� 5 � �6� & �
then

2 � � �6� 5 ���6� (�
, or

2 � � �6� (���6� & �
. In either case, the body of at least one

of the rules (3),(4) will be satisfied by 3 and therefore, 3H? � C � � �6� + ���6�-, �
. However, we

know that 3@? � C � 1 �32 ?�� ��* CV? � C � � �6� (���6�)' �
, which leads to a contradiction.

Note that the 1 �32 ?(� � C specifies the semantics of a p-program as the set of p-interpretations

inside a single N-dimensional parallelepiped whose borders are defined by 1 �32 ?(� � C�? �M
 C ��������
1 �32 ?���� C�? ��� C . Unfortunately, this is not always the case, i.e.,

����� ?���C need not be a

single
 -dimensional parallelepiped, as evidenced by the following proposition.

5

Proposition 3. If the atoms in
�M�

for �
 (Figure 1) are ordered as
�����

, then
����� ?	���	C � � �6� 5 ���6� (C�� � �0� 5 � �6� (��� ? �0� (� �0� & � � � �6� &���6�)' � �

Proof. First, we show that
����� ?��
 C 	 � �0� 5 � �0� (C�� � �6� 5 � �0� (��� ? �6� (���6� & � � � �0� & � �0� ' �B�

Let 3;J � �
 . As 1 �32 ?(� � ?��
 C CV? � C � � �0� 5 � �0� & �
(by rule (1)), three cases are possible.

1. 3@? � C � � �0� 5 � �0� (C . Consider rules (3) and (4). As 3H? � C � � �0� 5 � �6� (C , the body of

rule (3) will be true, and the body of rule (4) will be false. Thus, 3 must satisfy the

head of (3), i.e., 3@? � C � � �0� 5 � �0� (�
. Therefore 3 � � �6� 5 � �0� (C�� � �6� 5 ���6� (�

2. 3@? � C � �6� (
. In this case, the bodies of both rule (3) and rule (4) are satisfied,

and therefore 3 must satisfy both heads of these rules, i.e., 3H? � C � � �6� 5 � �0� (�
and

3@? � C � � �6� &� �0� ' �
. But as

� �6� 5 ���6� (� � �6� &���6�)' � �
, we arrive to a contradiction.

Therefore, for any p-interpretation 3&J � �
 , 3H? � C �� �6� (
.

3. 3@? � C � ? �0� (� �0� & � . Here, the body of rule (3) will not be true, but the body of rule

(4) will, therefore, 3 must satisfy the head of rule (4), i.e., 3H? � C � � �0� & � �6�)' �
. Then,

3 � ? �0� (� �6� & � � � �6� &� �0� ' �
.

Combining the results of all three cases together we get 3 � � �6� 5 ���6� (C�� � �0� 5 � �6� (�	�
? �6� (���6� & � � � �6� &���6�)' �

, which proves the inclusion. It is easy to verify that any 3 �
� �0� 5 � �6� (C�� � �0� 5 � �0� (��� ? �6� (� �0� & � � � �6� &���6�)' �

, is the model of �
 .
We note, here, that, in general, the problem of determining if a simple p-program �

is consistent is hard. We define the set CONS-P
�D� � J ����� ?	��C �� � .

Theorem 1. The set CONS-P is NP-complete.

3 Semantics of PLPs Revisited

As shown in Section 2.2, even for the simplest p-programs, the set of their models may

have a more complex structure than the one prescribed by the fixpoint procedure of [9].

In this section we study the problem of exact description and explicit computation of
����� ?	��C given program � . We show that in general case,

����� ?	��C is a union of a finite

number of
 -dimensional1 open, closed, or semi-closed parallelepipeds within the
 -
1 Whenever we are writing about
 -dimensional parallelepipeds representing the set of models

of a p-program, we implicitly assume the possibility that the true dimensionality of some of

6

dimensional unit hypercube
� ������ �

. In Section 3.1 we characterize
����� ?���C as the set

of solutions of a family of systems of inequalities constructed from � . In Section 3.2

we propose a way of computing
����� ?	��C using special transformations of � .

3.1 Characterization of Models

Definition 1. Let � be a simple p-program over the Herbrand base
�(�����	��
 �������� ��� �

.

With each atom
� � ���

we will associate a real variable � E with domain [0,1]. Let

��� ��� � 1 ��� � #&% �
 � � 1
 ���
 � * ���� *L��� � � 1 � ��� � � , �
	 �
be a clause of � .

The family of systems of inequalities induced by � , denoted 33
*��� ?	�(C is defined

as follows:

–
� � �

(� is a fact). 33
*��� ? �(C ���8� 1 Q � E Q� �K�
–

�
	 �
(� is a rule).

3'
 ��� ?	�(C � � ? �(C ��� ? �(C��
� ?	�(C �D�K� 1 Q � E Q� � 1 X Q � 7�� Q� X J �MQ R Q � �K� �� ?	�(C �D�K� � 7���� 1 X � J �MQSR Q � � � �K� � 7���� � X � J �(QSR Q � � �

The family 33
*��� ?	��C of systems of inequalities is defined as

3'
*��� ?���C �D� �
 �4����� �;��� J � XN� 3'
*��� ?	� X C ���(QSR Q � � �
Note that all inequalities in all systems from the definition above involve only one

variable. Given a system
�

of such inequalities, we denote the set of its solutions as� � 1 ? � C . For
�D�)� �

let 1 %E ����� �H� � � � 1 J ?!� E Q 1IC � � �8� and
� %E ���#"%$ � � � � � J � E 	� � � �K�

. Then it it easy to see that

� � 1 ? � C �
&' (if for some

� � 1 %E � � %E �
� 1 %E 5 ��� %E 5 � � ����

�
� 1 %E*) ��� %E*) � otherwise.

Informally, the set 3'
 ��� ?���C represents all possible systems of restrictions on

probabilities of atoms of
� �

whose solutions satisfy every clause of � . Of course,

not all individual systems of inequalities have solutions, but 3'
*��� ?���C captures all

the systems that do, as shown in the following lemma and theorem.

them can be less than
 due to the fact that with certain atoms of +-, exact point probabilities,

rather than intervals may be associated.

7

Lemma 1. Let � be a p-clause and 3 be a
2 % R .�� ��� 2 � � � � � R � . (both over the same Her-

brand Base
���

). Then 3&J � � iff
� � E � 3@? � C ��� � � 1 ? � C for some

� � 3'
 ��� ?	�(C .
Theorem 2. A p-interpretation 3 is a model of a simple p-program � iff there exists a

system of inequalities
� � 3'
 ��� ?���C such that � �D� � E � 3H? � C ��� � � 1 ? � C .

This leads to the following description of
����� ?���C :

Corollary 1.
����� ?	��C ���

% G��
�
	��� ��� � � 1 ? � C

We denote as
� ��� ��� ?	��C and � � 1 � � ?���C the sets of p-clauses with empty and non-

empty bodies in a p-program � , and as
� ?	��C and � ?���C - their respective sizes. Let also� ?���C be the maximum number of atoms in a body of a rule in � . Then, we can obtain

the following bound on the size of
����� ?	��C .

Corollary 2. The set of all p-interpretations 3 that satisfy a simple p-program � is a

union of at most
� ?	��C (not necessarily disjoint) N-dimensional parallelepipeds, where

� ?���C � ? 5 � ?���C) � C�� ��� .
This Corollary provides an exponential, in the size of the p-program, upper bound

on the number of disjoint parallelepipeds in the set
����� ?���C . We can show that this

bound cannot be substantially decreased in the general case. Consider p-program � �
over the set of atoms

� �����
 ���������� � �
:

� � � � ����� #&% �
(1)

� X � � � � ��� #&% � R � � �������� . (2i)
� � � �� � � #&% � X � � �6� 5 ���6� (� ��R � � ������ � . (3i)

Here, 3'
 ��� ? � C consists of a single equality ��� � �
; each of 33
*��� ? 5 R C includes

trivial inequalities
�,Q ��� � Q �

, and each of 3'
 ��� ? (KR C consists of three systems of

inequalities:
�
X � � �-Q ��� � � �0� 5 �

,
� �X � � �6� (� ��� � Q�� �

, and
� �X � � �0� 5 Q

� � � � �0� (��� � � � �
. Since

� �X is inconsistent with 3'
*��� ? � C , each consistent set

of inequalities in 33
*��� ?	� � C can be represented as
� � � � � � � � �X��"
 ��� �X for some

� X � � � � 5 � � R � � ������� . . It is easy to see that for any two different
�

and
�!

of such

form in 3'
 ��� ?����	C sets
� � 1 ? � C and

� � 1 ? �" C are disjoint. So,
����� ?����	C consists of

5 �
disjoint . -dimensional parallelepipeds. At the same time

� ?�� � C � .) � � � ?����	C � . ,� ?���� C � �
and a bitwise representation of � � takes only # ? .%$�&�' .UC bits.

8

3.2 Explicit Computation of Models

In this section we will address the following problem: given a simple p-program � ,

output the description of the set
����� ?���C as a union of N-dimensional parallelepipeds.

The construction from previous section gives one algorithm for computing
����� ?	��C :

given a program � construct explicitly the set of systems of inequalities 33
*��� ?���C and

then solve each system from this set. This algorithm has exponential worst case com-

plexity in the size of the program and as program � � illustrates the worst case cannot be

avoided. However, it not hard to see that the algorithm based on solving individual sys-

tems of inequalities from 33
*��� ?	��C can be quite inefficient in its work. Indeed, as the

solution sets of individual systems of inequalities are not necessarily disjoint, this algo-

rithm may wind up computing parts of the final solution over and over. In this section,

we propose a different approach to direct computation of the set of models of a simple

p-program, which breaks the solution space into disjoint components and individually

computes each such component.

Consider a simple p-program � over the Herbrand base
� � � � �
 ������ � � �

. As� � ?	��C we denote the multiset of all p-annotated atoms found in all heads and bodies

of clauses in � . Given
� � � �

Let
� � ?���C � � � be the set of all p-annotated atoms of

the form
�'�@�

from
� � ?���C . Define for each

�'�1�M�
a set � � � � ? ��X C of all possible

bounds of probability intervals used in � for
��X

as follows � � � � ? � C �!��� 1 � %�� J ���
� 1 ��� � �)� � ?���C � � � � � ��� � �) � J ��� � 1 ���� �)� � ?���C � � � � � � � � � % � � � � �) � � . Thus

with each occurrence of a probability bound for
�

in � , we are also storing (encoded

as ”
%

” or ”
)

”) whether it is a lower or upper bound.

We order the elements of � � � � ? � C as follows.
� ����� � � � � ��� �

whenever
� Q �

, and
� ��� %�� � � ���) �

. Consider now � � � � ? � C ��� �
 � � �� % � ��� � ���������� � � � � �) � �
where sequence

�
 ������ ��� �
is in ascending order. Using the set � � � � ? � C we will now

construct the set of segments
� ��� � ? � C as follows.

Let
� X"��� � X � / X	�

and
� X
&

 ��� � X

&

 � / X

&

�

,
�(QSR Q�� % �

. We define the segment

� X associated with the pair
� X ��� X

&

as shown in the table on the left side of Figure 2.

Now,
� �� � ? � C ��� �
 � � � �������� � ���
 � .

9

Notice that if
� X�� � X

&

then,
/ X

is a “
%

” and
/ X
&

is a “
)

” (it follows from our

order on
� X

s) and the interval
� � X ��� X

&
X � � � � X ��� X �

will be added to
� ����� ? � C . The

following proposition establishes basic properties of the segment sets.

Proposition 4. Let � be a simple p-program,
���L� �

and
� ��� � ? � C ��� �
 �������� � � �
 � .

1.
� ��� � ? � C is a partition of

� � � ���
, in particular,. if

R �� �
then � X � � � .

2. Consider some
�MQSR Q�� % �

. Let � � � � � X and let 3
 and 3 � be p-interpretations

such that 3
 ? � C � � and 3 � ? � C � � . Then for all
� � � ��� � ?	��C � � � , 3
 J �$� � �

iff 3 � J � �D���
.

3. Consider some
�,Q'R Q � % 5

. Let � � � X and � � � X &

and let 3
 and 3 � be

p-interpretations such that 3
 ? � C � � and 3 � ? � C � � . Then

�	����� �L� � ?���C � � � J 3
 J �W����� � ���� ����� ��� � ?	��C � � � J 3 � J �F���8� � �

Given a simple p-program � over the Herbrand base
�(�$�!� �M
 �������� ��� �

, the seg-

mentation of � , denoted
� ��� ?	��C is defined as follows

� ��� ?	��C ��� �

� �
�
�
����

� �
�
J � � � � ��� � ? � � C ���(Q � Q
 � �

Basically,
� �� ?���C is a segmentation of the N-dimensional unit hypercube into

a number of ”bricks”. Recall that each point inside the N-dimensional unit hyper-

cube represents a p-interpretation. The following theorem shows that the set of all p-

interpretations satisfying � can be constructed from some ”bricks” of
� �� ?���C .

Theorem 3. 1. Any two different parallelepipeds of
� ��� ?���C do not intersect.

2. For any parallelepiped � � � ��� ?	��C either � 	 ����� ?	��C , or � ����� ?	��C � .
3. There exists such subset

� 	 � ��� ?���C that
����� ?���C � ��� G�� � .

Consider again program �
 (Fig. 1). Atom
�

has the set of probability bounds

� � � � 5 ? � C � ��� � � %�� � � �6� 5 � %�� � � �6� (� %�� � � �6� (�) � � � �6� &�) � � � � �) � �
and atom

�
has the

set of bounds � � � � 5 ? � C ����� � � %�� � � �6� 5 � %�� � � �6� (�) � � � �6� &� %�� � � �6�)' �) � � � � �) � �
.

The corresponding sets of the segments are� ��� �35�? � C �D� � � � �0� 5 � � � �0� 5 � �0� (C � � �6� (���6� (� � ? �6� (���6� & � � ? �0� & ����� � and� ��� �35�? � C �D� � � ���6� 5 C � � �6� 5 � �0� (� � ? �0� (� �6� & C � � �6� &��� � ' � � ? �0� ' � ��� � .
10

��������� � �� � � � � 	 � ��� ���
	 � � � 	 � ��� �	 � � � � 	 � ��� �		 � � � 	 � ��� �

(1) Compute ����� � � � .
(2) for each ��������� � � � do
(3) Choose some interpretation (point) ����� ;
(4) if ��� � � then add � to ���! � � � end if
(5) end do

Fig. 2. Determination of segments in ����� �#" � (left) and algorithm GenMod for computing
�$�! � � � . (right)

Then
� �� ?��
 C consists of 25 rectangles of the form �

� �
�

where �

 � � �� �&% ? � C

and �
� � � ��� �35 ? � C (in fact, 5 of them with �

 � � �0� (� �6� (�
are linear segments).

As is shown in Proposition 3 only 2 of them consist of models of � � : ����� ?��
 C �
� �0� 5 � �6� (C�� � �0� 5 � �0� (��� ? �6� (� �0� & � � � �6� &���6�)' � �

Theorem 3 suggests that
����� ?���C can be constructed using the algorithm GenMod

described in Figure 2. We note that steps (3) and (4) of this algorithm can be processed

efficiently. In particular, if � � �

�
����

� �
�

and each �
X

is a segment with the

lower bound 1
X

and the upper bound
� X ��R � � ��������
 � then for each

R
the value 3H? � X C

on step (3) can be chosen to be equal to ?	1 X) � X C(' 5 . So, the runtime of GenMod is

bounded by a polynomial of the size of
� ��� ?���C . The size of

� ��� ?���C is, in its turn,

exponential of the size of the set
�M�

of all atoms of � . Of course, it can be a case when

some “bricks” in
� ��� ?���C can be united into one larger “brick”, so that

����� ?���C is

represented by a smaller number of bricks than
� ��� ?	��C . But the program � � shows

that in the general case even minimal number of ”non-unitable” bricks in
����� ?	��C can

be exponential in J �M� J . Therefore, the worst case running time of algorithm GenMod

can not be improved. At the same time, we can improve on GenMod, by being more

careful at how the N-dimensional “bricks” are considered.

We fix an ordering
�
 ������ � � �

of
� �

. Given a simple p-program � , let 1 �32 ?(� � ? � X C C �
�*) X and
 � ?���C � �

�X ��
 �!) X . From [9] we know that
����� ?���C �
 � ?���C . We observe,

that it is sufficient, to segment
 � ?	��C rather than the unit N-dimensional hypercube to

compute
����� ?	��C . For a set of segments

�
and a segment

�
let us denote by

� ;�
the

set
� � J � � �

and � 	 � �
.

11

Algorithm GenModT(� :program, � " 	 ��� � 	�"���� :atoms)
if � ��� and � � �	�
�� � " ��
 � � � then � ��� � ��� �
��

else // � includes at least two different atoms
� ��� � �����
� � �
�� � � � ; // compute Ng-Subrahmanian ��� operator
if � ��� then return(�)
else // if NS(P) is not empty, proceed with computations
// reduce � wrt ����� �� � ��� �
for ����� to � do � � ��� � "!�#%$ � � 	 " � � ��� � � end do
�&�'� � � ��� � � � 	�" �)(���� �� // the segmentation of " inside the ��� operator

// main loop
for each � �+* � 	 �-, � �&�-� do
� . � ��� � "!�#%$ � � 	�" � � � �
if � . is empty then � ��� � �����/��0 � � � � � �� � $ � ��	 � � � �
else // find the solution for the reduct
� � �/� � ��� �'� ���! �� � � . 	 � " $ 	���� � 	�"���� � ;
if � � �/�21�3� then � ��� � �����/�40 � �5�	� � �/� � end if

end if end do
end if end if
return ���/� ;

Fig. 3. Algorithm GenModT for computing �$�! � � � .

Given a simple p-program � , an atom
�D�)� �

and an interval 6 	 � � �����
, we denote

by � � � ��� �V?	� � ��� 66C a reduced program which results from � as follows:

(i) Delete from � any clause � with the head
���K�

such that 6 	 �
.

(ii) Delete from � any clause � whose body includes an atom
���K�

such that
� 6 � .

(ii) Delete from the body of any other rule each atom
���K�

such that 6 	 �
.

It is easy to see that
����� ? � � � ��� �V?	� � �D� 66C C � ����� ?	� � �	��� 6 # � � C .

Figure 3 contains the pseudocode for the algorithm GenModT, designed to intelli-

gently execute all steps of the algorithm GenMod. The algorithm works as follows. On

the first step, we compute
 � ?	��C , reduce � wrt
 � ?���C and construct segmentation

of
�

. Then for each segment, we construct a reduced program � and recursively run

GenModT on � and set
� � � �������� � � �

of atoms, and combine the solution returned by

the recursive call with the segment of
�(

for which it was obtained. The union of solu-

tions computed this way is returned at the end of each call to GenModT. The stopping

conditions are either an empty reduct program, meaning that the segmentation leading

12

to this reduct yields a part of the final solution, or a contradiction during the compu-

tation of
 � ?���C , meaning that current segmentation does not yield models of � . The

theorem below states that Algorithm GenModT is correct.

Theorem 4. Given a simple p-program � and an ordering
��
 �������� ���

of
���

, algo-

rithm GenModT returns the set
����� ?���C .

Apart from using
 � ? � C as starting points for segmentation on every step, Algo-

rithm GenModT improves over a naive implementation of GenMod in two ways. First,

it may turn out that one of the stopping conditions for GenModT holds before the re-

cursion has exhausted all atoms from � . In this case, it means that either an entire

sub-space is part of the solution or is not part of the solution, but we no longer need to

check each “brick” inside that sub-space. Second, on each step of the recursion after the

first one, segmentation of the current atom occurs with respect to the current program,

which is a reduct of � w.r.t. all previously considered atoms. This reduct has a sim-

pler structure, and, in many cases, would have fewer and shorter rules. This means that

the segmentation of the current atom w.r.t. the reduct may contain fewer segments than

the segmentation w.r.t. original program � . Another convenient feature ofGenModT is

that it structures
����� ?���C in a form of a tree, corresponding to the way it recursively

enumerates the solutions.

The advantages of GenModT over naive implementation of GenMod are demon-

strated in the example of program �
 (Fig. 1). It was shown that
 � ?��
 C � � �6� 5 � �0� & � �
� �0� 5 � �6�)' �

and that
� ��� �65	? � C � � � � � �0� 5 � � � �0� 5 � �0� (C � � �6� (���6� (� � ? �6� (���6� & � � ? �0� & ����� � and� ��� �35�? � C � � � �� �6� 5 C � � �6� 5 ���6� (� � ? �0� (� �0� & C � � �6� &���6�)' � � ? �0� ' ��� � � . So, at the first step of

GenModT
� �) � � �� �35�? � C ? �6� 5 ���6� & � � � � �0� 5 � �0� (C � � �6� (���6� (� � ? �6� (� �0� & � � and the

main loop will proceed three times as follows:

1) � � � �6� 5 ���6� (C , � ��� � � � �0� 5 � �0� (� #&% � �
,
� � 1 �D� � �6� 5 � �0� (C � � �0� 5 � �0� (� �

;

2) � � � �6� (���6� (�
, � �D� � � � �0� 5 � �0� (� # % � � � � � �6� &� �0� ' � # % � �

,
� � 1 � � � � 1 � ;

3) � � ? �6� (���6� & � , � ��� � � � �0� & � �0� ' � # % � �
,
� � 1 � � � � 1 � � ? �6� (���6� & � � � �0� & � �6�)' � �

.

The result will be
� � 1 � � �0� 5 � �6� (C � � �0� 5 � �6� (� � ? �6� (� �0� & � � � �6� &���6�)' �

which is equal

to
����� ?��
 C (see Proposition 3). Thus, GenModT tries only 3 bricks while GenMod

will check all 25 bricks.

13

4 Related Work and Conclusions

There has been a number of logic programming frameworks for uncertainty proposed

in the past 15 years (see [4] for a detailed survey), most concentrating on point proba-

bilities. The work of Poole [13] and Ngo and Haddawy [12] treated the “
%

” as condi-

tional dependence and used logic programming to model Bayesian Networks. In more

recent work, Baral et al.[1] present an elegant way to incorporate probabilistic reasoning

into an answer set programming framework, in which they combine probabilistic rea-

soning with traditional non-monotonic reasoning. At the same time,some work [8–11,

4, 5] looked at interval probabilities as the means of expressing imprecision in proba-

bility assessment. tics of the original In all those frameworks, the underlying semantics

allowed for expression of the possible probability of an atom in a program as a single

closed interval. Our work is the first to consider a harder problem of describing the

semantics of interval-based probabilistic logic programs with sets of point probability

assessments (p-interpretations), based on the semantics of interval probabilities pro-

posed by De Campos et. al [3] and Weichselberger[15]. As shown in this paper, even

for fairly simple syntax, such descriptions become more complex than single intervals

and their computation is much more strenuous. Our next step is to study our semantics

in the full language of p-programs of [9] and hybrid probabilistic programs [4]. We are

also interested in investigating the relationship between the p-programs with possible

worlds semantics and constraint logic programs.

References

1. Chitta Baral, Michael Gelfond, J. Nelson Rushton. (2004) Probabilistic Reasoning With

Answer Sets, in Proc. LPNMR-2004, pp. 21-33.

2. V. Biazzo, A. Gilio. (1999) A Generalization of the Fundamental Theorem of de Finetti for

Imprecise Conditional Probability Assessments, Proc. 1st. Intl. Symposium on Imprecise

Probabilities and Their Applications.

3. Luis M. de Campos, Juan F. Huete, Serafin Moral (1994). Probability Intervals: A Tool

for Uncertain Reasoning, International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems (IJUFKS), Vol. 2(2), pp. 167 – 196.

14

4. A. Dekhtyar and V.S. Subrahmanian (2000) Hybrid Probabilistic Programs. Journal of

Logic Programming, Volume 43, Issue 3, pp. 187 – 250 .

5. M.I.. Dekhtyar, A. Dekhtyar and V.S. Subrahmanian (1999) Hybrid Probabilistic Programs:

Algorithms and Complexity in Proc. of 1999 Conf. on Uncertainty in AI (UAI), pp 160 –

169.

6. H.E. Kyburg Jr. (1998) Interval-valued Probabilities, in G. de Cooman,

P. Walley and F.G. Cozman (Eds.), Imprecise Probabilities Project,

http://ippserv.rug.ac.be/documentation/interval prob/interval prob.html.

7. V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, Proc.

Int. Conf. on Database Expert Systems and Applications, (DEXA’94), September 7-9, 1994,

Athens, Greece, Lecture Notes in Computer Science, Vol. 856, Springer (1994), pp. 724-

733.

8. V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, Proc. Int. Logic

Programming Symp., (ILPS’94), November 1994, Ithaca, NY, MIT Press.

9. R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming, INFORMATION

AND COMPUTATION, 101, 2, pps 150–201, 1993.

10. R. Ng and V.S. Subrahmanian. A Semantical Framework for Supporting Subjective and

Conditional Probabilities in Deductive Databases, JOURNAL OF AUTOMATED REASON-

ING, 10, 2, pps 191–235, 1993.

11. R. Ng and V.S. Subrahmanian. (1995) Stable Semantics for Probabilistic Deductive

Databases, INFORMATION AND COMPUTATION, 110, 1, pps 42-83.

12. L. Ngo, P. Haddawy (1995) Probabilistic Logic Programming and Bayesian Networks, in

Proc. ASIAN-1995, pp. 286-300.

13. D. Poole (1993). Probabilistic Horn Abduction and Bayesian Networks. Artificial Intelli-

gence, Vol. 64(1), pp. 81-129.

14. Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,

1991.

15. Weichselberger, K. (1999). The theory of interval-probability as a unifying concept for un-

certainty. Proc. 1st International Symp. on Imprecise Probabilities and Their Applications.

15

