
DYNAMIC DEDUCTIVE DATA BASES
WITH STEADY BEHAVIOR 1

Michael I. Dekhtyar
Dept. of CS, Tver St. Univ.

Tver, Russia, 170000
mat@mat.tvegu.tver.su

Alexander Ja. Dikovsky
4 Miusskaya Sq.,

Keldysh Inst. for Appl. Math.
Moscow, Russia, 125047
dikovsky@applmat.msk.su

Abstract

We consider deductive databases with updates and integrity constraints and introduce
a new notion - that of bounded disturbance of an active medium. In these terms we define
several types of notions of steady behavior of such deductive databases, which may open
up new classes of applications of logically controlled databases. In this work we explore
computational complexity of the concepts introduced .

Keywords: dynamic deductive data base, update, stability, computational complexity.

1 Introduction

This work presents a novel approach to deductive databases with updates. Traditionally the
frame of deductive data bases includes: a version of logic language L in which relations on
data are specified; a formal system for L, normally, a resolution based one, which implements
an operational semantics of formulas (queries); a set of axioms imposing implicit conditions on
interpretations (DB states), e.g. CWA; and a set of integrity constraints (IC), i.e. invariant
properties of evolving DB states [11]. In the recent decade extensive research was done in the
field of deductive databases with updates (dynamic DDBs). Most attention was focussed on
update languages and on the analysis of their expressibility and complexity (cf. [1, 15, 14, 4])
as well as of declarative and operational semantics of updates (cf. [16, 9, 5]), the latter be-
ing closely connected with analysis of revision and updates in propositional knowledge bases
(cf. [13, 10]). The central problem in this field is determination of the effect of updates and
validation of their consistency with IC. Updates violating IC are usually treated as abnormal.
This is one of the points in which our approach to updates differs from the conventional one.
We distinguish two sources of modifications of DB states: the updates proper caused by DDB
control, and external disturbances of the medium in which this DDB acts. In their interaction,
one participant may cause IC violation, while the other one may restore the IC. There are
various classes of important applications calling for such an approach to updates. A typical
example is planning production processes with restrictions on the resources consumed. Specific
transactions predefined by production technology might cause consumption and, possibly, ex-
haustion of some of the resources needed to continue the process. So, to maintain this process,
we need periodical external replenishment of the resources, and successful planning should take
this into account (see the example in the Appendix). Traditional formal means dealing with

1This work was sponsored by the Russian fundamental studies foundation (Grant 93-012-627).

1

dynamic systems are analytical. Though advantageous in many respects, they are very sensitive
to the growth of the number of parameters. For DDBs the number of DB attributes is rather
a secondary factor. Threfore, the logical data bases approach to simulating the behavior of
dynamic systems seems to be very promising when these systems are characterized by multiple
parameters.

A deductive DDB B simulating the behavior of a dynamic system S represents its current
states by DB states. We represent the interaction of S and its medium by trajectories, i.e.
sequences of DB states of the form

ω : E0
d1−→ E∗1

G1

` E1
d2−→ E∗2

G2

`

Each action E∗i
Gi

` Ei stands for a successful refutation in B of the goal Gi in the DB state

E∗i , resulting in the new DB state Ei. This is a predefined update of B. Each step Ei
di−→ E∗i

stands for an external disturbance di. Suppose updates apply only to the states satisfying the
IC of B. Then the existence of an infinite trajectory ω means that the disturbances restore
IC after all updates, and so B can behave steadily in the state E0. Moreover, if we find
that all disturbances in the ω are bounded by some k with respect to a certain measure on
disturbances, it will mean that the steadiness is attained at the cost of no more than k-bounded
external disturbances. We call this sort of steady behavior a k-bounded stability. We also con-
sider another kind of steady behavior manifested in the existence of a trajectory with empty
disturbances which starts in a DB state E0 and leads to a DB state EN obeying the IC.
This property of a DDB indicates that it can sometimes restore the IC without external distur-
bances. We call such states E0 promising. In this paper we explore computational complexity
of these two kinds of steady behavior with respect to several types of IC and in various classes of
deductive DDBs. Bounded stability and promise properties are certainly not recursive equiva-
lent in the class of unlimited deductive DDBs. Nonetheless, their complexity is the same in the
classes of practical interest that we consider. E.g., when IC are monotonic and ground, while
DDBs are ground, nonrecursive, positive (don’t use negation) and never delete facts, they are of
linear time complexity. If we admit nonmonotonic IC or negation, they become NP -complete.
If, besides this, we allow deletion, they will be PSPACE-complete. If nonrecursive Datalog
DDBs are permitted as well, then their complexity goes up to SPACE(2poly)-completeness,
and if structures are available, then both properties are undecidable. If, furthermore, we admit
recursion stratified with respect to elementary updates, then both are PSPACE-complete in
ground case and SPACE(2poly)-complete in Datalog case.

This paper is organized as follows. Section 2 contains some necessary preliminaries. Section
3 introduces the basic notions of δ-bounded disturbance of medium, δ-stable trajectory and
promising state. Section 4 presents results characterizing complexity of the promise problem
in several classes of dynamic DDBs. Section 5 contains results concerning complexity of two
modifications of the stability problem in the same classes of DDBs. Due to the lack of space
we provide only brief sketches of proofs.

2 Notation and Preliminaries

We consider logic programs with updates in a first-order language L as nondeterministic
transformations of database (DB) states. Along with the set of predicate symbols P of L we

2

admit in general the set F of its functors. To obtain a natural semantics of updates we, similarly
to [14], split P into two disjoint parts Pe (extensional predicates) and Pi (intensional
predicates). Accordingly, the Herbrand base B of L splits into Be = {p(t1, ..., tk) |
ti ∈ H, p ∈ Pe} and Bi = {q(u1, ..., ul) | ui ∈ H, q ∈ Pi}, where H is the Herbrand
universe of L. DB states are subsets of Be. The heads of clauses of logic programs are
always intensional atoms. The bodies of clauses can include two kinds of elementary database
updates: insert(A), delete(A), where A is an extensional atom. We also allow negative
extensional atoms in the clause bodies. To save the size of the programs, the bodies may include
the disjunction ”;” as well as the update operator change(A,B) in place of the combination
delete(A), insert(B).

We rely on the traditional SLD-refutation operational semantics of logic programs with the
following specific features. The Prolog like leftmost selection computation rule is used with
safe calls of elementary updates (i.e. all variables in the arguments of updates of the form
insert(A) or delete(A) should be bound by ground terms by the moment of their call).
Negation is treated as finite failure, which means in our very restricted situation that a negated
atom in the current state cannot be unified to any fact in the current DB state. Successful
refutations have a side effect of transforming initial DB states into new DB states. Any logic
program with updates can thus be naturally associated with the following relation E ` E ′ on
DB states.

Definition 1 Let I be a logic program, E , E ′ be two DB states and :− G be a goal. A
refutation of I ∪ E ∪ { :− G} is a finite sequence S = s1, s2, ..., sn of triplets (computation
states) of the form si = (Ei, Gi, σi), in which Ei is a DB state, Gi is a goal and σi is a
substitution, E1 = E , G1 = G, σ1 is the identity substitution ε, Gn is the empty goal 2

and each step (si, si+1), i < n, is of one of the following types. Let Gi = L1, L2, . . . , Lk.
(1) When L1 is an atom, then for some variant of a clause (possibly a unit one) H :−

B1, . . . , Br (r ≥ 0) and for MGU θ of L1 ◦ σi and H the equalities Gi+1 =
B1, . . . , Br, L2, . . . , Lk, σi+1 = σi ◦ θ and Ei+1 = Ei hold as normally.

(2) When L1 = ¬q(t̄) for some q ∈ Pe and q(t̄) ◦ σi cannot be unified to any fact in
Ei, then the equalities Gi+1 = L2, . . . , Lk, Ei+1 = Ei and σi+1 = σi hold.

(3) When L1 = insert(A) and A◦σi ∈ Be then the equalities Gi+1 = L2, . . . , Lk, Ei+1 =
Ei ∪ { A ◦ σi} and σi+1 = σi hold.

(4) When L1 = delete(A) and A ◦ σi ∈ Be then the equalities Gi+1 = L2, . . . , Lk, Ei+1 =
Ei \ {A ◦ σi} and σi+1 = σi hold.

When such a refutation exists, we write the usual I ∪ E ∪ { :− G} =⇒ 2.
If in addition En = E ′, then we say that the program I with the goal { :− G} transforms

E into E ′, and denote this by E
G

`I E ′.

As is readily seen from this definition, we consider each goal for a logic program with up-
dates as a pre-defined nondeterministic transformation of DB states. In contrast to [5], we do
not extend the language of logic programs to reflect explicitly intermediate DB states of refu-
tations. However, our semantics allows us to impose constraints on these states in a natural
manner. E.g., a successful application of the clause

h :− insert(son(jack, tom)),¬ancestor(jack, tom), etc, ...
is possible only if the addition of the fact son(jack, tom) to a current DB state does not

3

conflict the acyclicity of the ”ancestor” relation.
In real application databases data can usually be naturally stratified into classes where

specific values of certain attributes are purely informational, i.e. their change does not affect
operational properties of the data base. The data differing only in such ”insignificant” features
can be regarded as equivalent. The partitioning of data into classes of data equivalence some-
times permits reduction of a large and potentially infinite application domain to a finite and
visible one. Some variations of this property can be found in theory. E.g., the so called C-
genericity considered in several works [12, 2, 1, 6] defines equivalence of all constants to within
some finite subset. We introduce the following more general notion.

Definition 2 Let ≡ be an equivalence on H. It can be extended naturally onto Be :
g(t1, ..., tn) ≡ g(t′1, ..., t

′
n) iff ti ≡ t′i for all 1 ≤ i ≤ n. For any D1, D2 ⊆ Be : we set

D1 <≡ D2, if there is such a function η : D1 → D2 that for every G ∈ D1 G ≡ η(G).
D1 <≡> D2 if D1 <≡ D2 and D2 <≡ D1.

A logic program I ∪{ :− G} is compatible with an equivalence ≡ on Be if for any three

states E1, E ′1, E2 ⊆ Be such that E1 <≡> E2 and E1

G

`I E ′1 there exists such a state E ′2 that

E ′1 <≡> E ′2 and E2

G

`I E ′2.

The class of logic programs is computationally universal, i.e. equivalent to Turing machines.
That is why the majority of natural algorithmic problems related to transformations of DB
states are unsolvable. Nevertheless there are natural constraints on logic programs which hold
generally in applications and provide solutions for some of these problems. One of the most
realistic constraints of this kind is the property of stratifiability analogous in a sense to [3].

Definition 3 Let P be a logic program. We say that a predicate p refers to a predicate q
if there is a clause defining p in P with q in its body. We consider the relation ”depend
on” which is the reflexive and transitive closure of the relation ”refer to”. Maximal strongly
connected components of the graph of the relation ”depend on” are called cliques. P is called
dynamically stratified (d-stratified) if in any of its clauses

p(t̄) :− p1(t̄1), . . . , pi(t̄i), q(ū), pi+1(t̄i+1), . . . , pr(t̄r)

in which q is in the clique of p, all predicates p1, . . . , pi, pi+1, . . . , pr are stationary, i.e. do not
depend on elementary updates.

The main point of this definition is that DB updates are available only at the steps where a
clique is changed. The next definition introduces a classification of logic programs by the form
of their clauses.

Definition 4 A logic program P is stationary if all its predicates are stationary. P is positive
if it does not use negation. It is called ground if all its clauses are ground. It is flat if all terms
in its clauses are variables or constants. We call P expanding if the update delete/1 is not
used in its clauses. And we call P productional if it defines the unique intensional predicate
q/0 and all its clauses are productions, i.e. have the form q :− Con1, . . . , Conk, Act1, . . . ,
Actm where each Coni is an extensional literal and each Actj is an elementary update.

4

The term ”production” is borrowed from AI. Our clause q :− Con1, . . . , Conk, Act1, . . . ,
Actm coresponds there to the conditional transformation of the form CONDITION ⇒
ACTION where CONDITION is the conjunction of the literals Coni, and ACTION is
the sequence of updates Act1, . . . , Actm. Similar rules have been used, say in the transaction
language DL in [1], though in programs with somewhat different semantics.

3 Behavior of Dynamic Deductive Data Bases

The deductive data bases (DDBs) under consideration are in the line of the definition in [11].
They include an intensional logic program with updates, a pre-defined set of goals implementing
DB state transactions as well as queries, integrity constraints embodied by a stationary logic
program and a data equivalence. To describe the behavior of dynamic DDBs in media acting
on DB states we introduce a new concept of trajectory and define properties of trajectories
reflecting steady behavior.

Definition 5 A dynamic deductive data base in language L is a system
B =< I ∪ { :− G1, . . . , :− Gn }, A ∪ { :− R }, ≡i >

where:
- I is a logic program with updates in L,
- all goals Gi, i = 1, . . . , n, are either ground or stationary,
- A ∪ { :− R} is a stationary logic program in L defining integrity constraints (IC),
- ≡i is an equivalence on Be (we call it a data equivalence), and logic programs I ∪

{ :− Gi}, i = 1, . . . , n, and A ∪ { :− R} are compatible with ≡i .
Ground goals are called updates. Stationary goals are called queries.

Now we turn to the main definition of this paper. Its core concept is the notion of trajectory
with disturbance which makes behavior of a dynamic DDB reactive towards the effect of its
medium.

Definition 6 For any two disjoint sets D+,D− ⊆ Be, we define the (D+,D−)-disturbance

as the relation on DB states E1
D+,D−
−→ E2 such that E1, E2 ⊆ Be and E2 = (E1 ∪D+) \ D−.

Let B be a dynamic DDB. We define a trajectory of B as any finite or infinite sequence
of the form

ω : E0

D+
1 ,D−

1−→ E∗1
Gi1

`I E1

D+
2 ,D−

2−→ E∗2
Gi2

`I E2

The sequence of pairs d = (D+
1 ,D−

1), (D+
2 ,D−

2), ... is called the disturbance of the trajectory ω.
ω is d-supported if all states E∗i , i = 1, 2, ... satisfy the IC A , i.e. A∪E∗i ∪{ :− R} =⇒ 2 .

A specific feature of this definition is that it reflects the sequential model of interaction
between a dynamic DDBs and its media. They affect DB states in turn. d-supportedness
of a trajectory means that all IC violations caused by DDB updates are compensated in this
trajectory by subsequent disturbances. Notice that such a compensation is always possible at
the cost of an unlimited increase in the size of the disturbance. Therefore we need reasonable
restrictions on this size so as to obtain adequate notions of steady behavior.

5

Definition 7 Let B be a dynamic DDB and δ =< D+,D− > with finite D+,D− ⊆ Be. A
trajectory ω with the disturbance d = (D+

1 ,D−
1), (D+

2 ,D−
2), ... is δ-stable if it is infinite and

for all k ≥ 1
D+

k <≡i D+ and D−
k <≡i D−.

B is δ-stable in a DB state E0 if it has a δ-stable trajectory starting in this DB state.
We call a DB state E promising for B if there is a finite trajectory of B with empty

disturbance, i.e. with D+
k = D−

k = ∅ for all k, starting in E and resulting in some DB state
satisfying the IC A.

The above properties of steady behavior are rather weak. δ−stability is an existential
property. It does not reflect the behavior of the DDB along all possible trajectories. As to
promise, it provides compensation of IC without external disturbances, though along some
trajectory of indefinite length.

Example 1. Consider the following toy dynamic DDB B1 describing health condition
in terms of three propositional extensional predicates healthy, ill and medicine (the last one
representing the availability of the necessary remedy). The intensional logic program consists
of two updates:

upd1 :− ill,medicine, delete(ill), delete(medicine), insert(healthy).
upd2 :− healthy, change(healthy, ill).

The IC describes satisfactory states:
r :− healthy ; ill,medicine.

This dynamic DDB is ({medicine}, ∅)-stable in any DB state satisfying the IC. Indeed, if
the DB state contains healthy, then the second update upd2 is applied. It might violate the
IC in the case where medicine is not present. However, the IC can be restored by the only
possible nonempty disturbance. If the DB state contains ill and medicine, then the first
update upd1 is applied and a state containing healthy arises. Observe that none of the DB
states violating the IC is promising in B1. Meanwhile, if we replace the IC r by

r1 :− healthy ; ¬ill.

then the state {ill, medicine} does not satisfy the new IC r1 though it is promising.
Example 2. Let us develop the preceding DDB by including two different diseases and

corresponding medicines and let immunity arise as a result of curing these diseases. The new
dynamic DDB B2 has the following intensional logic program:

upd1i :− diseasei,medicinei, delete(diseasei), delete(medicinei), insert(immunityi). (i = 1, 2),
upd2 :− ¬immunity1,¬immunity2,¬desease1,¬disease2, insert(disease1), insert(disease2),
upd3i :− immunityi, delete(immunityi). (i = 1, 2)

and the IC:
r :− (¬disease1;medicine1), (¬disease2;medicine2).
The dynamic DDB B2 is δ−stable for δ = ({medicine1, medicine2}, ∅) in all states

satisfying the IC. This is rather obvious because in each DB state satisfying the IC at least one
update is applicable, and moreover, the maximal disturbance transforms any DB state into a
state obeying the IC. However, for δ1 = ({medicine1}, ∅) B2 is not δ1−stable in any state.
The reason is that any infinite d-supported trajectory includes an application of the update
upd2 which leads to a DB state including both diseases, hence for restoring the IC medicine2

is needed externally. A more interesting example can be found in the Appendix.

6

4 Complexity of Promise Problem

Promise guarantees the accessibility of a state obeying IC from a given state without distur-
bances. This corresponds to purely logical moves along a trajectory. Let P be a class of
dynamic DDBs. The promise problem for this class is the problem of membership of pairs
(B, E) in the set

PROMISE(P) = {(B, E) | E is a promising state of a dynamic DDB B ∈ P}.

The promise problem apparently includes the problem of satisfiability of IC, i.e. the halting
problem for logic programs implementing IC. So in the class of all dynamic DDBs this problem is
undecidable. That is why we consider below only those dynamic DDBs whose IC A∪{ :− R}
satisfy one of the following conditions:

(IC0) A is positive and ground (IC0-constraints);
(IC1) A is ground (IC1-constraints);
(IC2) all intensional atoms in the bodies of clauses are ground (IC2-constraints).

We need to know the complexity of the IC checking under these restrictions, to account for its
part in the complexity of promise and stability problems.

Theorem 1
(1) The problem of IC-satisfiability in a finite DB state E ⊆ Be w.r.t. IC1-constraints

(IC0-constraints) A can be solved in linear time w.r.t. | A | + | E |.
(2) The problem of IC-satisfiability in a finite DB state E ⊆ Be w.r.t. IC2-constraints A

is NP -complete.

Proof sketch. A square time algorithm in the case of IC1-constraints is straightforward. A
linear time algorithm in this case can be obtained by the method used in [7]. In the case of
IC2-constraints NP -completeness is established by a straightforward reduction of SAT to the
IC-satisfiability. 2

After we have reasonably narrowed the class of integrity constraints we should impose
several workable conditions on intensional parts of dynamic DDBs and analyze their impact
on computational complexity. By PROD we denote the set of all dynamic DDBs with
productional intensional programs I. Within this class we introduce several subclasses:

- PROF is the subclass of all dynamic DDBs in PROD with flat intensional parts I;
- PROG is the subclass of all dynamic DDBs in PROD with ground intensional parts;
- PROG− is the subclass of all dynamic DDBs in PROG with expanding intensional

parts;
- PROG+ is the subclass of all dynamic DDBs in PROG− with positive intentional

parts (hence intensional parts of programs in PROG+ do not use negation and the update
delete/1).

The dynamic DDB B1 in example 1 belongs to PROG−, whereas B2 in example 2
belongs to PROG. In all these classes one can find various important applications. E.g.
spreadsheets can be directly represented as dynamic DDBs in PROG with very simple IC1-
constraints. The so called productional expert systems fall into the PROF class and some of
them even into PROG−. The next theorem shows that the complexity of the promise problem
in these classes of DDBs immediately depends on the kinds of nonmonotonic means used in
their intensional parts.

7

Theorem 2
(1) The problem PROMISE(PROG+) w.r.t. IC0-constraints can be solved in linear time,

and w.r.t. IC1-constraints it is NP -complete.
(2) The problem PROMISE(PROG−) w.r.t. IC2-constraints belongs to NP, and w.r.t.

IC0-constraints it is NP -hard.
(3) The problem PROMISE(PROG) w.r.t. IC2-constraints belongs to PSPACE, and

w.r.t. IC0-constraints it is PSPACE-hard.
(4) The problem PROMISE(PROF) w.r.t. IC2-constraints belongs to SPACE(2poly).

and w.r.t. IC0-constraints it is SPACE(2poly)-hard.
(5) The problem PROMISE(PROD) is undecidable.

Proof sketch. (1) The linear time algorithm proposed for PROMISE(PROG+) is similar to
the algorithm in the proof of Theorem 1 and uses monotonicity of the IC0-constraints. Upper
bounds (2)-(4) are based on count arguments concerning the size of DB states and on guessing
short trajectories. Lower bounds for (1),(2) are established by a reduction of SAT. Lower
bounds for (3) and (4) are based on simulation of Turing machine computations by trajectories
of dynamic DDBs in corresponding classes. E.g., in the case of (4) let M be some Turing
machine which accepts some set B in space bounded by 2p(n) for some polynomial p(n), n
being the length of an input word x = ai1ai2 ...ain , and let N = p(n) + 1 . Instantaneous
description of M is represented by a DB state such that (i) for every tape cell of M with
binary number s1 . . . sN (si ∈ {0, 1}) which contains the symbol ai, there exists the fact
a(s1, . . . , sN , i), and (ii) for the tape cell in the position of the machine head and in the current
state qk there exists the fact h(s1, . . . , sN , k). The intensional part I of the resulting DDB
B defines the unique update g/0. Each instruction of M is simulated by a set of clauses
(productions) of I . E.g., when the instruction qkai → qyazR of M is applied, but not
in the rightmost tape cell, it is simulated by the following N clauses:

g :− h(S1, ..., Sj , 0, 1, ..., 1, k), a(S1, ..., Sj , 0, 1, ..., 1, i), a(S1, ..., Sj , 1, 0, ..., 0, X),
change(h(S1, ..., Sj , 0, 1, ..., 1, k), h(S1, ..., Sj , 1, 0, ..., 0, y)),
change(a(S1, ..., Sj , 0, 1, ..., 1, i), a(S1, ..., Sj , 0, 1, ..., 1, z))

(0 ≤ j ≤ N − 1). Further, we set B = < I ∪ { :− g }, { :− h(S1, . . . , SN , 1) }, = >
and Ex = { h(0, . . . , 0, 1, 0), a(0, . . . , 0, 1, i1), . . . , a(j1, . . . , jN , in) } where j1, . . . , jN is
the binary representation of n (q0 and q1 are, resp., the starting and the accepting states of
M). It is readily seen that | B | + | Ex |= O(| M | N2). M reaches its final instantaneous
description Kfin from the starting description for x iff there is a state EKfin

which satisfies
the IC, contains a fact of the form h(S1, . . . , SN , 1) and can be reached from Ex by successive
applications of clauses in I. This assertion can be established by induction on the number of
steps of a computation of M on x. Unsolvability of (5) is proved by simulation of Minsky
counter automata. Counters are simulated by terms of unbounded depth. 2

It is interesting to note that the promise problem is solvable in a class of d-stratified deduc-
tive DDBs substantially greater than PROF. We will use GDS and FDS to denote the
classes of all dynamic DDBs having IC2-constraints and d-stratified and, resp., ground or flat
intensional parts.

Theorem 3
(1) The problem PROMISE(GDS) is PSPACE-complete.
(2) The problem PROMISE(FDS) is SPACE(2poly)-complete.

8

Proof sketch. Lower bounds of (1),(2) follow from the preceding theorem. Upper bounds need
some auxiliary concepts and lemmas. Computations of logic programs are naturally represented
by computation trees. We adapt here the definition of a computation tree used in [8] for
computations of Prolog programs.

Definition 8 Let I be some logic program, R = A1, ..., An, and c - its computation

E1

R

`I E2. Then the tree of this computation t = t(c) is defined as follows. The nodes of t
are pairs of the form (G, U) where G is one of the subgoals resolved in c and U is the
substitution chosen for its resolution. The root of t is the pair v0 = (R, ε) and it has sons
(A1, U1), ..., (An, Un). Let a node v = (G1, U) of t correspond to a subgoal G1 resolved in
c in a state (E , (G1, ..., Gk), σ). In the case where G1 is an elementary update or a negated
atom, v is a leaf and U = ε . If G1 is an extensional or intensional atom resolved by a unit
clause B in I ∪ E , then v is a leaf and U is a MGU of G1 ◦ σ and B. And finally, if
G1 is an intensional atom resolved by a clause H :− B1, . . . , Br(r ≥ 1), and θ is the MGU
of G1 ◦ σ and H, then U = θ and v has in t r sons: (B1, U1), ..., (Br, Ur).

We associate with each node v of t its input and output DB states E in(v), Eout(v) and its
global contexts σin(v), σout(v). For the root v0 we set E in(v0) = E1 and Eout(v0) = E2 and
σin(v) = ε. For leaves v with negative subgoals, E in(v) = Eout(v) and σin(v) = σout(v).
For elementary update leaves v, σin(v) = σout(v) and Eout(v) is obtained from E in(v)
by the corresponding elementary update (inserting or deleting a fact). For all other leaves
v = (G, U), E in(v) = Eout(v) and σout(v) = σin(v) ◦ U. For an inner node v = (G, U)
with r sons v1 = (B1, U1), ..., vr = (Br, Ur), we set E in(v1) = E in(v), Eout(v) = Eout(vr),
Eout(vi) = E in(vi+1) for each 1 ≤ i < r, σin(v1) = σin(v) ◦ U, σout(v) = σout(vr) and
σout(vi) = σin(vi+1) for each 1 ≤ i < r. For a node v = (G, U), we call the literals
instin(v) = G ◦ σin(v) and instout(v) = G ◦ σout(v), resp., an in-instance and an out-instance
of G in v.

One can easily verify that these definitions of input and output DB states and global contexts
are correct. From this definition it follows that σout(v0) restricted to the variables of the goal
R is the computed answer substitution of the computation c.

To illustrate these notions, let I be the logic program with clauses
s :− e1(X), a(X)
a(X) :− ¬e2(X), insert(e2(X))
a(X) :− e2(X), delete(e2(X))

and with the goal :− s. Let E0 = {e1(c1), e2(c2)} and E1 = {e1(c1), e2(c2), e2(c1)} be two

DB states. The computation tree E0

s

`I E1 is shown in Fig. 1.

Definition 9 Let t be some computation tree, and let v1 = (A1, U1) and v2 = (A2, U2)
be nodes of t such that v1 is an ancestor of v2. We call this pair of nodes contractable
if E in(v1) = E in(v2), Eout(v1) = Eout(v2) and there exists such a 1-1 renaming substitution
θ that A1 = A2 ◦ θ and for each variable X in A1 σin(v1)(X) = σin(v2)(X ◦ θ) and
σout(v1)(X) = σout(v2)(X ◦ θ). The tree t is contracted if it has no two contractable nodes.

Two computation trees t1, t2 with the roots v01, v02 respectively, are equivalent if
instin(v01) = instin(v02), instout(v01) = instout(v02), E in(v01) = E in(v02) and Eout(v01) =
Eout(v02).

9

v0 = (s, ε)

?�

?
v1 = (e1(X

1), {X1 = c1})

-

?
v2 = (a(X1), {X1 = X2})

?�

?
v3 = (¬e2(X

2), ε)

-

?
v4 = (insert(e2(X

2)), ε)

Fig.1
In this computation tree we have, for example, instin(v1) = e1(X

1), instout(v1) = e1(c
1),

E in(v4) = E0, Eout(v4) = E1, instin(v3) = ¬e2(c1) and σout(v4) = {X1 = c1, X
2 = X1}.

Lemma 1 (Contraction lemma). For any computation tree t1 there exists an equivalent
contracted computation tree t2.

Lemma 2 Let t be a computation tree of E1

G

`I E2, bI be the maximal length of clause
bodies of I, l(t) = max{ | instin(v) |, | instout(v) | | v ∈ t}, and db(t) = max{ | E in(v) |,
|Eout(v) | | v ∈ t}. Then the computation described by t can be simulated by a Turing machine
in space O(max{db(t), depth(t)× bI × l(t)}).

Returning to the proof of upper bounds we observe that in any path of a contracted computation
tree all nodes are pairwise not equivalent. Therefore by the contraction lemma, the depth of
a computation tree for GDS can be bounded by |I |2. For FDS this depth can be bounded
by |I |pca, where p is the number of intensional predicates of I, c is the number of its
constants and a is the maximal arity of its intensional predicates. Therefore by lemma 2 we
get the required upper bounds. 2

5 Complexity of Stability Problems

In this section we explore the complexity of the problems of stability in a state and stability in
multiple states.

Definition 10 Let B be a dynamic DDB and δ =< C+, C− > with finite C+, C− ⊆ Be. A
DB state E of B is called a δ-state if C+ <≡i E and for no t ∈ C− t <≡i E is true.

For each class P of dynamic DDBs we consider its subclass Ppeq with IC2-constraints and
with data equivalence relation such that for some polynomial pol the problems D1 <≡i D2

and ”for no A ∈ D1, B ∈ D2 A ≡i B” can be solved in space pol(| D1 | + | D2 |) for
any finite D1, D2. We estimate the complexity of the following problems:

STABLE(P) = {(B, δ, E) | B ∈ Ppeq is δ − stable in E},
STABLE∀(P) = {(B, δ, C+, C−) | B ∈ Ppeq is δ − stable in any (C+, C−)− state}.

It is rather a surprising fact that in simple classes of deductive DDBs under consideration
the complexity of the promise problem and the stability problem is the same. This is not the
case in the class of unrestricted dynamic DDBs.

10

Theorem 4
(1) The problem STABLE(PROG+) w.r.t. IC0-constraints can be solved in linear time,

and w.r.t. IC1-constraints it is NP -complete.
(2) The problem STABLE(PROG−) w.r.t. IC2-constraints belongs to NP, and w.r.t.

IC0-constraints it is NP -hard.

Proof sketch. (1) The upper bound is a very special subcase of the one in Theorem 2(1), and
the lower bound is obtained by a straightforward reduction of SAT.
(2) Upper bound. We need several auxiliary notions and facts. Let B =< I ∪ { :− g}, A∪
{ :− R}, ≡i > be a dynamic DDB in the class PROG−. In the case where the update

E
g

`I E ′ is effected by a single application of a production p ∈ I, we shall simply

write E
p

` E ′. For a production p, we use ins(p) to denote the set of all atoms
inserted by p. Let δ =< D+,D− > . Let us denote the set of all extensional atoms
occurring in B and δ by Ke. We define the following bipartite graph Γ = (Π1, Π2, ∆).
Π1 = 2K

e
and Π2 = {E ∈ Π1 | E satisfies the IC} are two node components of Γ. The set

of its arrows is defined as ∆ = {(E1, E2) | E1 ∈ Π1, E2 ∈ Π2, E1

D+
0 ,D−

0−→ E2 for some D+
0 ⊆

D+,D−
0 ⊆ D−} ∪ { (E2, E1) | E2 ∈ Π2, E1 ∈ Π1, E2

p

` E1 for some p ∈ I}. The graph Γ is
very closely related to δ-stable trajectories. This relation can be formulated as the following

Lemma 3 There is a δ-stable trajectory in B starting in a state E iff there is a node
E1 ∈ Π2 such that there is a path in Γ from E ∩ Ke ∈ Π1 to E1 and there is a nonempty
loop in Γ from E1 to E1.

We define a simplification of an IC A via a given set D of extensional atoms as the logic
program S(D,A) obtained from A by the following transformation: first we delete from A
all clauses containing literals of the form ¬a for some a ∈ D, then we remove all occurrences
of atoms a ∈ D from bodies of the remaining clauses.

Lemma 4 Let E be a DB state and D ⊆ E . Then for any IC A ∪ { :− R} we have
A ∪ E ∪ { :− R} =⇒ 2 iff S(D,A) ∪ E ∪ { :− R} =⇒ 2.

It is easily seen that in PROG− δ-stability is reduced to < ∅,D− >-stability. Hence, below
we set D+ = ∅.

Lemma 5 For any DB state E the following statements are equivalent:
(i) B is δ-stable in E ;
(ii) there exist D′ ⊆ D−, a production p ∈ I and DB states E1, E∗1 such that E∗1

satisfies the IC A, E ∅,D′
−→ E∗1

p

` E1 and the DDB B′ =< (I \ {p}) ∪ { :− g}, S(ins(p) \
D−,A) ∪ { :− R}, ≡i > is δ-stable in E1.

From this lemma it follows that the length of the shortest path described by Lemma 3 does
not exceed 2 | I | +1. This provides a nondeterministic polynomial time procedure for
STABLE(PROG−). 2

Now we will show that in classes GDS and FDS the promise and the stability problems
are again of the same complexity. Moreover, in these classes ∀-stability is of no greater
complexity then the stability in a DB state.

11

Theorem 5
(1) The problem STABLE∀(GDS) is PSPACE-complete.
(2) The problem STABLE∀(FDS) is SPACE(2poly)-complete.

Proof sketch. (1) Upper bound. Here we define a bipartite graph similar to the one in
Theorem 4, and for all (C+, C−)-states we guess the corresponding paths described in Lemma
3. To check the arrows of these paths we use the algorithm of Theorem 3(1).

Lower bound. Let M be a Turing machine with states q0, q1, ..., qr, qf , qs and m
tape symbols, accepting a set B in space bounded by a polynomial p(n). M starts in the
state q0 and stops at any input word x in one of two states qs, qf , x belonging to B iff
M stops in qs. For an input word x = ai1ai2 ...ain we construct such a pair (B, E), that
x ∈ B iff (B, E0) ∈ STABLE∀(GDS). We introduce extensional predicates xij which will
hold iff aj is written in the tape cell i, hi which will hold iff the head of M looks at the
cell i, qk which will hold iff the current state of M is qk, and two auxiliary extensional
predicates l/0, b/0. We set δ =< {l}, ∅ >, C+ = {q0, h1, x1i1 , ..., xnin} ∪{ xj0 | n < j ≤ p(n)}
and C− = {l, b, qi, hj, xst | qi, hj, xst not in C+}. For each instruction qiaj → qyazS
of M and for every k, 1 ≤ k ≤ p(n), the intensional part I of B includes a clause:

g :− ¬l,¬b, qi, hk, xkj , delete(qi), delete(hk), delete(xkj), insert(qy), insert(hk′), insert(xkz)
where k′ is determined by k and by the shift S. Besides these, I has the clauses:

g :− ¬b, qf , change(qf , b),
g :− ¬b, l, q0, change(q0, b),

.........

g :− ¬b, l, qr, change(qr, b),
g :− ¬b, l, qs.

The IC is: { :− ¬b, (l; q0; ...; qr)}. We claim that x ∈ B iff there exists a δ-stable trajectory
for any (C+, C−)-state of B.

(2) Upper bound. For the class FDS we again consider a modification of the bipartite
graph Γ with the only difference that Π1 is the set of all states of B. So instead of Lemma
3 we use here its following counterpart.

Lemma 6 There is a δ-stable trajectory in B starting in a state E0 ∈ Π1 iff there is a node
E1 ∈ Π2 such that there is a path in Γ from E0 to E1 and there is a nonempty loop in Γ
from E1 to E1.

Lower bound is established by a reduction which adapts the one in the proof of Theorem 2
(4) to STABLE∀ (FDS). The most specific feature of this reduction is that we must guess
initial instantaneous descriptions of the simulated Turing machine in an exponentially large
set of (C+, C−)-states and filter out the correct ones by recursive stationary procedures. This
provides the required d-stratified dynamic DDB . 2

From this theorem and from its proof we get several corollaries.

Corollary 1
(1) The problem STABLE(GDS) is PSPACE-complete.
(2) The problem STABLE(PROG) is PSPACE-complete.
(3) The problem STABLE(FDS) is SPACE(2poly)-complete.
(4) The problem STABLE(PROF) is SPACE(2poly)-complete.

12

Of course, the problem of stability is undecidable in the class PROD. The reason is the
same as for the promise problem.

6 Conclusion

We have proposed a new model of interactive behavior of deductive databases and some char-
acteristics of their steadiness with respect to the action of their active media. Even our very
simplified examples show that various kinds of dynamic systems interacting with active me-
dia can be simulated by dynamic DDBs, and the properties of their steady behavior can be
formulated and explored in the terms of this work. We consider here two weakest properties
of steady behavior - promise and stability, showing that they are solvable in several classes of
dynamic DDBs of interest in applications. There are other forms of steadiness we have not
explored in this work. One of them is a uniform δ − stability which means that for any
update of a dynamic DDB B there is a δ−bounded disturbance restoring the IC. Another
one is a δ−homeostacity which is dual to the stability property. It characterizes the so called
d-resistant trajectories of B, i.e., in the notation of the Definition 6, those in which all states
Ei, i = 0, 1, ... satisfy the IC. Informally speaking, this means that for any external disturbance
there exists an update which restores the IC. B is δ − homeostatic if it has this property
for all δ−bounded disturbances. All upper bounds of complexity established for stability are
valid for uniform δ−stability and δ−homeostacity as well. But in fact their complexity is
significantly lower, and we shall explore it elsewhere.

References

[1] Abiteboul, S., Vianu, V., Datalog extensions for database queries and updates, Rapp. de
Recherche n. 900, INRIA-Rocquencourt. Septembre, 1988.

[2] Aho, A.V., Ullman, J.D., Universality of data retrieval languages, Proc. 6th ACM Symp. on
Principles of Prog. Languages, San Antonio, Texas, 110-117, 1979.

[3] Apt, K.R., Blair, H. and Walker A., Towards a theory of declarative knowledge. in: J. Minker
(ed.) Foundations of deductive databases and logic programming. Morgan Kaufman Pub., Los
Altos, 89-148, 1988.

[4] Bonner, A.J., Hypothetical Datalog: complexity and expressibility. Theoretical Computer Science,
76, 3-51, 1990.

[5] Bonner,A.G., Kifer, M., Transaction logic programing, In Proc. of the Tenth Intern. Conf. on
Logic Programming . The MIT Press, 257-279, 1993.

[6] Chandra, A.K., Harel, D., Computable queries for relational databases, Journal of Computer
and System Sciences, vol. 21, n.2 1980, 156-178.

[7] Dikovsky, A.Ja., Linear time solutions to the problems related to automatic synthesis of acyclic
programs. Programming, 3, 1975.

[8] Dikovsky, A.Ja., On computational complexity of Prolog programs. Theoretical Computer Sci-
ence, 119, 63-102, 1993.

13

[9] Dung, P.M., Representing actions in logic programming and its application in database updates.
In Proc. of the Tenth Intern. Conf. on Logic Programming, The MIT Press, 222-238, 1993.

[10] Eiter, T., Gottlob, G., On the complexity of propositional knowledge base revision, updates, and
counterfactuals. Artificial Intelligence, vol. 57, 227-270, 1992.

[11] Gallaire, H., Minker, J., Nicolas, J.-M., Logic and databases: a deductive approach, ACM
Computing Surveys, vol. 16, n.2, 153-185, 1984.

[12] Hull, R., Relative information capacity of simple relational database schemata. SIAM J. of
Computing, vol. 15, n.3 856-886, 1986.

[13] Katsuno, H., Mendelzon, A. O., Propositional knowledge base revision and minimal change.
Artificial Intelligence, vol. 52, 253-294, 1991.

[14] Manchanda, S., Warren, D.S., A logic-based language for database updates. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, Morgan-Kaufmann, Los Altos, CA,
363-394, 1988.

[15] Naqvi, S., Krishnamurthy, R., Database updates in logic programming. In ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 251-262, 1988.

[16] Sadri, F., Kowalski, R., A theorem proving approach to database integrity. In J. Minker, editor,
Foundations of Deductive Databases and Logic Programming, Morgan-Kaufmann, Los Altos, CA,
313-362, 1988.

APPENDIX

A building company constructs dwelling houses. The financial support of its activity is based
on payments from customer’s contracts. The payments are put on the current account and are spent
on materials and on monthly employee’s salary.

1. A fragment of the DB scheme:
current account(Sum), spare contract(Customer), contract state(Contract number, Customer,
Ready), (Ready takes values in {no, yes}), balance(Contract number, Sum to pay, Paid),
received(Contract number, Paid sum), month salary(Sum) (total month salary to pay), paid in
(Y ear, Month), materials(Price), assembly(Price), profit rate(Percent), minimal sum(Sum),
(the minimum possible remainder of the sum on the account),...

2. A fragment of the intensional part of DDB:

execute :− /* Execution of a contract */
salary paid,
contract state(N,C, no),
materials(MPrice),
assembly(APrice),
current account(CS),
CS > MPrice,
change(current account(CS), current account(CS −MPrice)),
change(contract state(N,C, no), contract state(N,C, yes)),
profit rate(Percent),
P rice = (MPrice + APrice) ∗ (1 + Percent/100),

14

insert(balance(N,Price, 0)).
receive :− /* Payments and accounts */

received(N,Sum),
balance(N,S,R),
change(balance(N,S,R), balance(N,S,R + Sum)),
change(current account(CS), current account(CS + Sum)),
delete(received(N,Sum)).

pay :− /* Payment of salary */
previous month(Y, M), /* built-in predicate */
¬paid in(Y, M),
month salary(T),
current account(C),
C > T,
change(current account(C), current account(C − T)),
insert(paid in(Y, M)).

salary paid :−
previous month(Y, M),
paid in(Y, M).

search :− /* Search for a contract */
salary paid,
¬contract state(, , no), /* nothing to do */
spare contract(Customer),
assign number(Number),
insert(contract state(Number, Customer, no)),
delete(spare contract(Customer)).

3. Integrity constraints (on finances only):

admissible :−
current account(T),
minimal sum(Min),
findall(P,

(balance(, S, C),
S > C,
P is S − C),
LP),

sum(LP, Free), /* Free - debit sum */
T + Free > Min.

As we see in this example, any update of this dynamic DDB changes current states. Any operation im-
plies consumption of materials and money for payments, which can lead to DB states violating the IC.
These resources can only be restored externally in the form of new accessible contracts which are sought
by the update search/0. E.g., in the state E0 containing facts materials(800), assembly(700),
profit rate(50) , current account(2200), month salary(900) and minimal sum(1000), this DDB is
δ-stable for δ = < { spare contract(), received(, 2250) }, ∅ > . However, the stability is lost if the
monthly salary raises to month salary(4500), while the other parameters and δ remain unchanged.
The point is that in this state no update can be applied.

15

