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Abstract

Categorial Dependency Grammars (CDG) introduced in this paper express pro-
jective and distant dependencies in classical categorial grammar terms. They treat
order constraints in terms of oriented polarized valencies and a bounded commu-
tativity rule. CDGs are expressive, constitute a convenient frame for coupling de-
pendency grammars with linguistic semantics, and with all this, they are parsed in
polynomial time under realistic conditions.
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1 Introduction

Dependency grammars (DGs) and categorial grammars (CGs) have much in
common from the technical point of view. Both are completely lexicalized, use
syntactic types in the place of rewriting rules, naturally fit functional seman-
tic structures and are equivalent to CF-grammars if only the weak expressive
power is concerned and the core syntax is considered. But as far as the matter
concerns the strong expressive power, many fundamental differences appear
between these formalisms. CGs are more adapted to syntagmatic (phrase)
structures, whereas DGs are designed for assigning dependency trees. It is

1 This work was sponsored by the Russian Fundamental Studies Foundation (Grant
01-01-00278).
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true that there is a simple translation from phrase structures with head selec-
tion to projective 2 dependency trees and back (see [Gla66,Rob70] or [DM00]
for more details), which perfectly conforms with the direct simulation of core
dependency grammars by classical CGs [Gai61]. Unfortunately, this technical
correspondence does not preserve the intended syntactic types. The reason
is that the intended syntactic functions corresponding to the dependencies
are different from those of the heads in the syntagmatic structures originat-
ing from the X-bar theory [Jac77]. Basically, the most essential distinctions
are in the interpretation of verb and noun modifiers, which in dependency
surface syntax are subordinate and iterated. On the other hand, the CGs’
elimination rules induce dependencies from the functional type words to the
argument type words. So, e.g. the adjectives, whose canonical type is [n/n]
must govern the modified nouns and not vice versa as in DGs. The same exam-
ple illustrates the difference in treating iterated modifiers. In more recent DGs
(cf. [ST93,LL96]) the explicitly used iterated dependencies preserve the subor-
dinacy depth, whereas in CGs the simulation of the iteration through recursion
leads to unlimited depth of subordinate modifiers. Even the subcategorization
dependencies between verbs and their actants are quite different. They are
more numerous in dependency syntax, in which dependencies reflect differ-
ences in pronominalization, redistribution and order constraints (see [Mel88]
for more details). Another important difference is that dependency trees, in
contrast with phrase structures, naturally capture discontinuous surface word
order. Rather expressive (and so expensive) extensions of CGs are needed to
cope with discontinuous structures and with naturally oriented dependencies
simulation (e.g. non-associative and associative Lambek calculus and their
multi-modal extensions [Mor94,MM]). Meanwhile, as it was shown in [Dik01],
both can be very naturally and feasibly expressed in DGs in terms of polar-
ized dependency valencies controlled by the simple principle, which enables a
discontinuous dependency between two closest words having the same valency
with the opposite signs (“first available” ( FA) principle). A certain inconve-
nience of these polarized DGs is that being tree generating grammars, they
are not completely lexicalized and do not propose a natural frame for formal
linguistic semantics. This defect was eliminated in recent paper [Dik04], where
the idea of polarized dependency valencies is implemented in terms of cate-
gorial grammars extended by the rule FA. In this paper we use a bounded
commutativity rule in the place of the rule FA. The resulting categorial depen-
dency grammars are enough expressive and universal to be used in practice,
are parsed in polynomial time for each given inventory of dependency rela-
tions and can be naturally coupled with traditional type logical semantics via
formal linguistic meaning as defined in [Dik03].

2 Projective corresponds to continuous in terms of DTs: the projections of all words
fill continuous segments of the sentence.
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2 Syntactic types

We address to syntactic types as categories. Elementary categories are neutral.
They serve as types of local dependencies. For instance, subj is the elementary
local dependency, whose subordinate is a noun or a pronoun in the syntactic
role of the subject and whose governor is a verb, whereas subj inf is that in
which the subordinate is a verb in infinitive. The set of elementary categories
will be denoted by C. Elementary categories may be iterated. For a ∈ C,
a∗ denotes the corresponding iterative category. For instance, modif ∗ is the
type of iterated category modif . For a set X ⊆ C, X∗ = {C∗ | C ∈ X} and
Xω = X ∪X∗. The iterative categories are also neutral.

Besides the neutral categories there are also polarized categories. They serve
as types of distant dependencies. The polarized categories have one of four
polarities: left and right positive ↗,↖ and left and right negative ↘,↙ .
For each polarity v, there is the unique “dual” polarity v̆: ↖̆ = ↙, ↙̆ =↖
, ↗̆ =↘, ↘̆ =↗. Intuitively, the positive categories can be seen as valencies
of the outgoing distant dependencies of governors, and the negative categories
as those of the incoming distant dependencies of subordinate words. So they
correspond respectively to the beginnings and the ends of distant dependen-
cies. For instance, the positive valency ↖wh upon obj marks the beginning
of the distant dependency wh upon obj of a transitive verb governing a left-
dislocated object wh-group headed by the preposition ‘UPON’, whereas the
end of this dependency is marked by the dual negative valency↙wh upon obj
of this preposition (cf. upon what dependency theory we rely).

↗C, ↖C, ↘C and ↙C denote the corresponding sets of polarized distant
dependency categories. For instance, ↗C = {(↗ C) | C ∈ C} is the set of
right positive categories. V +(C) =↗C ∪ ↖C is the set of positive distant
dependency categories, V −(C) =↘C ∪ ↙C is the set of those negative.

Defining distant dependencies, it is sometimes necessary to express that the
subordinate word is the first (last) in the sentence, in the clause, etc., or it
immediately precedes (follows) some word. For instance, in French the neg-
ative dependency category ↙ clit−dobj of a cliticized direct object must
be anchored to the auxiliary verb or to the verb in a non-analytic form.
For that we distinguish in the set of all negative distant categories a subset
Anc(C) ⊆ V −(C) of anchored negative categories.

Definition 1 The set Cat(C) of dependency tree (DT) categories is the least
set verifying the conditions:
1. C ∪ V −(C) ⊂ Cat(C).
2. For C ∈ Cat(C), A1 ∈ Cω ∪ ↖C, A2 ∈ Cω ∪ ↗C, and B ∈ Anc(C),
the categories [A1\C], [C/A2], [B\\C] and [C//B] also belong to Cat(C).
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We suppose that all constructors \, /, \\, // are associative. So every complex
DT category α can be presented in the form

α = [Lk lk . . . L1 l1 C r1 R1 . . . rm Rm],
where li and rj are respectively left and right constructors. E.g.,

[(↙clit−dobj)\\subj\S/auxPP ]
is one of categories of an auxiliary verb, which defines it as the host word for
a cliticized direct object, requires the local subject dependency on its left and
requires on its right the local dependency auxPP with a subordinate PP.

3 Grammar definition

Definition 2 A categorial dependency grammar (CDG) is a system G = (W,C, S,
δ), where W is a finite set of words, C is a finite set of elementary categories
containing the selected root category S, and δ - called lexicon - is a finite sub-
stitution on W such that δ(a) ⊂ Cat(C) for each word a ∈ W.

Below, we will index DT categories by their positions in a given sentence
w = a1 . . . an. These indexes will serve to define dependency trees: αi will be
a category of a DT with the root ai.

Definition 3 A D-sentential form of a sentence w = a1 . . . an ∈ W+ is a
pair (∆, Γ), where ∆ is an oriented labelled graph with the set of nodes V =
{a1, . . . , an} and a set of arcs labeled by primitive categories, and Γ is a
nonempty string of rooted categories.
An initial D-sentential form of w = a1 . . . an is an expression ((V, ∅), C1

1 . . . Cn
n),

in which Ci ∈ δ(ai) for all 1 ≤ i ≤ n. A terminal D-sentential form of
w = a1 . . . an is a pair (∆, Sj), in which ∆ = (V, E) is a DT on w with
the root aj.

Below we define a provability relation ` . It is defined by several rules applying
to sentential forms. The most specific are the rules of polarized dependency
valencies’ control. The idea behind these rules is that in order to establish a
distant dependency between two words with dual dependency valencies, both
valencies must be charged. Positive valencies are charged by definition. As to
negative valencies, they may be charged or uncharged. The uncharged nega-
tive valencies can serve only to anchor a distant subordinate to a host word
or position. As soon as the correct position of the subordinate is identified, its
valency becomes charged and so available to the governor. In order to distin-
guish between charged and uncharged valencies, we use for each dependency
valency vC its unique charged copy #(vC).

Definition 4 Rules for provability relation ` (we present only the rules Rl

for left constructors; the right constructor rules Rr are similar).
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Simplification rule :

S. ((V, E), Γ1[C]jΓ2) ` ((V, E), Γ1C
jΓ2) for C ∈ C ∪ V −(C).

Local dependency rule :

Ll. ((V, E), Γ1C
j[C\β]lΓ2) ` ((V, E ∪ {aj

C←− al}), Γ1[β]lΓ2).

Iterative dependency rules:

Il. ((V, E), Γ1C
j[C∗\α]lΓ2) ` ((V, E ∪ {aj

C←− al}), Γ1[C
∗\α]lΓ2).

Ωl. ((V, E), Γ1[C
∗\α]lΓ2) ` ((V, E), Γ1α

lΓ2).

Anchored dependency rule:

Al. ((V, E), Γ1C
j[C\\α]lΓ2) ` ((V, E), Γ1#(C)jαlΓ2) for C ∈ Anc(C).

Positive dependency rule:

Pl. ((V, E), Γ1[(↖C)\α]jΓ2) ` ((V, E), Γ1#(↖C)jαjΓ2).

Commutativity rules (both) :

Cl. ((V, E), Γ1 (C ′)j#(vC)l Γ2) ` ((V, E), Γ1 #(vC)l(C ′)j Γ2) if (vC) is a
left dependency valency (i.e. (vC) ∈ ↖C ∪ ↘C) and the category C ′ has
neither occurrences of (vC) nor of (v̆C).

Cr. ((V, E), Γ1 #(vC)j(C ′)l Γ2) ` ((V, E), Γ1 (C ′)l#(vC)j Γ2) if (vC) is a
right dependency valency (i.e. (vC) ∈ ↗C ∪ ↙C) and the category C ′ has
neither occurrences of (vC) nor of (v̆C).

Distant dependency rule:

Dl. ((V, E), Γ1#(↙C)j#(↖C)lΓ2) ` ((V, E ∪ {aj
C←− al}), Γ1Γ2).

This system of rules defines the immediate provability relation ` . Its subsys-
tem consisting of simplification, local dependency and iterative category rules
defines the projective immediate provability relation `p. `∗ and `∗p denote their
corresponding reflexive-transitive closures.

Definition 5 A dependency tree (DT) D is assigned by a CDG G = (W,C, S, δ)
to a sentence w (denoted G(D, w)) if (∆0, Γ0) `∗ (D, Sj) for some initial sen-
tential form (∆0, Γ0) of w and some 1 ≤ j ≤ n.
The DT language generated by G is the set of DTs DT (G) = {D | ∃w G(D, w)}.
The language generated by G is the set of sentences L(G) = {w | ∃D G(D, w)}.
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This definition is correct in the following sense:

Proposition 1 For each CDG G and sentence w ∈ W ∗, if (∆0, Γ0) `∗ (D, Sj)
for some initial sentential form (∆0, Γ0) of w, some 1 ≤ j ≤ n, and some
graph D, then D is a DT on w.

4 Expressive power

CDGs are weakly more expressive than CFGs and strongly more expressive
than dependency grammars generating projective DTs. This is shown by the
following examples cited from [Dik04].

Example 1 Let G0 = ({a, b, c, d1, d2, d3}, C0, S, δ0), where δ0 is defined by:
a 7→ [↙C\\ ↙B], [↙B\\ ↙B],
b 7→ [↖B\D/A],
c 7→ [D\A],

d1 7→ ↙C,
d2 7→ [↙B\\ ↖C\S/D],
d3 7→ D.

a a a d2 b b b c c

[D\A][D\A][D\A][α\D/A][α\D/A][α\D/A][ᾰ\\β\S/D]

= ~= ~~

D

A

D

A

D

S

d3 c

D

+ j

A

d1

[ᾰ\\ᾰ][ᾰ\\ᾰ][β̆\\ᾰ]β̆

+=/+

ᾰ

ᾰ

ᾰ

[β\S/D]

Fig. 1. A proof of G0(D, d1a
3d2b

3d3c
3).

Fig. 1 shows a proof of G0(D, d1a
3d2b

3d3c
3). In this proof, α =↖B, β =↖C,

two meeting continuous slanting lines correspond to one application of the local
or iterated dependency rule, two meeting dashed slanting lines correspond to
one application of the anchored dependency rule, and right-angled dashed lines
connect categories to which the rules Pl,Cl,Cr,Dl are applied.
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Proposition 2 L(G0) = {d1a
nd2b

nd3c
n | n > 0}.

Proof. In short, if we delete all polarized subcategories, we obtain a rigid
categorial grammar defining the language {d2b

nd3c
n | n ≥ 1}. Returning to

the original CDG, we remark that: (1) only one occurrence of d2 is possible
(its functional subcategory is S), so exactly one occurrence of d1 is possible
and it must precede d2, (2) if some a precedes d1 or follows d2, then its cate-
gory cannot be eliminated, (3) only one a can have category [β̆\\ᾰ] because β̆
assigned to d1 becomes charged, (4) so there must be as many a as b. 2

Example 2 Fig. 2 shows a case of PP-movement in English expressed using
the categories:
C1 = [det\subj/attr−rel] ∈ δ(person),
C2 = [(↙prepos)\\attr−rel/wh−rel] ∈ δ(whom),
C3 = [subj\wh−rel/inf−obj] ∈ δ(must),
C4 = [(↖prepos)\inf−obj] ∈ δ(refer),
C5 = [subj\S/n−copul] ∈ δ(is),
det ∈ δ(the), ↙prepos ∈ δ(to), subj ∈ δ(you), and n−copul ∈ δ(Smith).

the person to whom you must refer is Smith
n−copulC5C4C3subjC2↙preposC1det

[subj/attr−rel] [attr−rel/wh−rel] [wh−rel/inf−obj]

inf−obj

wh−rel

attr−rel

subj

[subj\S]

S

~

n−copul

~

inf−obj

=

subj

w

wh−rel

~

attr−rel

=

det
	

prepos

=

subj

Fig. 2. A case of PP-movement in English.

In this proof, the rule Ll applied to det and C1 gives the dependency (the
det←−

person) of category [subj/attr− rel]. Ll applied to subj and C3 gives the

dependency (you
subj←− must) of category [wh−rel/inf−obj]. Al applied
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to ↙ prepos and C2 gives #(↙ prepos)[attr− rel/wh− rel]. Now we can
eliminate #(↙prepos) applying rules Cl,Cr,Pl,Dl to this category and C4.

This reduces C4 to inf−obj and gives the distant dependency (to
wh−rel←−

refer). Finally, Ll,Lr are applied four times.

CDG can be strongly simulated by the polarized dependency tree grammars
(PDTG) introduced in [Dik01].

Proposition 3 For each CDG G1 there is a PDTG G2 such that for all w ∈
W+ and all DTs D G1(D, w) iff G2(D, w).

Proof. We illustrate the idea of this simulation by the following example.
Suppose that a 7→ [A\(↘B)\\(↖D)\C/E∗] in G1. Then in G2 we will have
the following tree rewriting rules:

D
<− − a

B
− −> N(B)

N(A)

N(C1) N(E)
~

E

→ N(C)

N(C2) → N(C1)

N(C3) → N(C2)

→ N(C3)

�
A

N(C) N(E)
~

E

||

It is not difficult to see that this construction gives a PDTG G2 strongly
equivalent to G1. 2

Definition 6 Let D be a DT of a sentence w = a1 . . . an. For a space i be-
tween the words ai and ai+1, 1 ≤ i < n, we define the distant dependen-
cies thickness in i (denoted dth(D, i)) as the number of distant dependen-

cies (ak

d
<− − al), (ak

d
− −> al) in D covering i (i.e. such that

k < i < l for some k, l and d). dth(D)=df max{dth(D, i)|1 ≤ i < |D|} and
dth(G)=df max{0, min{dth(D)|G(D, w)} | w ∈ L(G)}.

For instance, dth(G0) =∞. For natural languages, this measure is seemingly
bounded by a small constant (2 or 3). In example 2 dth(D) = 1.

Theorem 1 If for a CDG G, the measure dth(G) is bounded by a constant,
then L(G) is context-free.

Proof. For all PDTG G1, dth(G1) ≥ σ(G1), where σ(G1) - the defect of G1

- is a complexity measure of PDTGs defined in [Dik01]. So if a CDG G has a
distant dependencies thickness bounded by a constant k, then the PDTG G′

simulating G has a defect bounded by the same constant. Therefore, according
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to Theorem 1 in [Dik01], L(G′) = L(G) is context-free. 2

It is an interesting theoretical problem to compare the weak generative capac-
ity of CDGs and mildly context-sensitive grammars [JSW91]. We conjecture
that the 2-copy language {wcw | w ∈ W ∗} cannot be generated by CDGs.
On the other hand, the following proposition shows that CDG-languages are
incomparable with basic TAG languages.

Proposition 4 Each language L(m) = {d0a
n
0d1a

n
1 . . . dman

mdm+1|n ≥ 0} is
generated by a CDG.

Proof. An argument similar to that in Proposition 2 shows that L(m) is gen-
erated by the following CDG:
d0 7→ [S/D0], dm+1 7→ Dm, and a0 7→ [D0/D0/(↗Am)/ . . . /(↗A1)],
di 7→ [Di−1//(↘ Ai)], and ai 7→ [(↘ Ai)//(↘ Ai)], [(↘ Ai)/Di] for all
0 < i ≤ m. 2

5 Complexity

If there is no uniform constraint on the number of elementary categories, then
parsing of CDGs is a hard problem.

Theorem 2 The problem G(D, w) is NP-complete.

Proof. Its NP-hardness can be proven by the following polynomial reduction
of 3−CNF. Let Φ = C1∧ . . .∧Cm be a CNF over variables x1, ..., xn, in which
clauses Cj include 3 literals lj1, l

j
2, l

j
3 and ljk ∈ {x1,¬x1, . . . , xn,¬xn}.

Let G(Φ) = (W,C, S, δ), where W = {Φ, C1, . . . , Cm, x1, . . . , xn, y1, . . . yn},
C = {S, A, 10, 11, 20, 21, . . . , n0, n1} and
δ(Φ) = [(A\)n\S], δ(xi) = {[A/(↗ i0)], [A/(↗ i1)]}, δ(yi) = {(↘ i0), (↘ i1)},
δ(Cj) = {cat(lj1), cat(lj2), cat(lj3)}, where cat(xi) = [(↘ i1)/(↗ i1)] and cat(¬xi)
= [(↘ i0)/(↗ i0)]. Let also w(Φ) = x1x2 . . . xnΦC1C2 . . . Cmy1y2 . . . yn.
Assertion. Φ is satisfiable iff (∃D : DT ) G(Φ)(D, w(Φ)). 2

Fortunately, this anomaly is unrealistic: for each language the inventory of
elementary categories is fixed. With such a uniform bound CDG parsing has
polynomial complexity. It turns out that to parse a CDGs, it suffice to per-
form two independent tests: the first in terms of the projective provability `p

and the second in terms of neutralizability of distant dependency valencies. To
formulate this fact, we need two different projections of categories. The first,
called local, preserves only elementary and anchored argument sub-categories.
Intuitively, it preserves only projective dependencies of words and also their
neighborhood of anchored words. The second projection, called valency pro-
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jection, preserves only polarized sub-categories and their respective order.

Definition 7 Local projection ‖γ‖l of a string γ ∈ Cat(C)∗ is defined as
follows:

l1. ‖ε‖l = ε; ‖Cγ‖l = ‖C‖l‖γ‖l for C ∈ Cat(C) and γ ∈ Cat(C)∗.
l2. ‖C‖l = C for C ∈ Cω ∪ Anc(C).
l3. ‖C‖l = ε for loose distant dependency categories C.
l4. ‖[a\α]‖l = [a\ ‖α‖l] and ‖[α/a]‖l = [‖α‖l/a] for a ∈ Cω and α ∈

Cat(C).
l5. ‖[↖a\α]‖l = ‖[α/↗a]‖l = ‖α‖l for all a ∈ C and α ∈ Cat(C).
l6. ‖[α1\\α2]‖l = [α1\‖α2‖l] and ‖[α2//α1]‖l = [‖α2‖l/α1] for anchored de-

pendencies α1 ∈ Anc(C) and α2 ∈ Cat(C).

Valency projection ‖γ‖v of a string γ ∈ Cat(C)∗ is defined as follows:
v1. ‖ε‖v = ε; ‖Cγ‖v = ‖C‖v‖γ‖v for C ∈ Cat(C) and γ ∈ Cat(C)∗.
v2. ‖C‖v = ε for C ∈ Cω.
v3. ‖C‖v = C for C ∈ V (C).
v4. ‖[α]‖v = ‖α‖v for all [α] ∈ Cat(C).
v5. ‖A\\α‖v = ‖α//A‖v = ‖α‖v.
v6. ‖α1\α2‖v = ‖α1\\α2‖v = ‖α1/α2‖v = ‖α1//α2‖v = ‖α1‖v‖α2‖v.

for all α1, α2 ∈ Cat(C).

Example 3 According to these definitions,

‖[(↘c)\\(↖a)\b\(↙d)/e]‖l =

 [(↘c)\b\(↙d)/e], if ↙d ∈ Anc(C),

[(↘c)\b\ε/e], otherwise

and ‖[(↘c)\\(↖a)\b\d]‖v = ↖a, ‖[(↘c)\\(↖a)\b\(↙d)/e]‖v = ↖a↙d
independent of which is ↙d : anchored or loose.

Slightly abusing notation, below we will apply the relation `p to local projec-
tions of D-sentential forms. These forms may contain occurrences of anchored
categories. In the local projection, these anchored categories are treated just
as elementary categories.

Besides these projections we need a criterion of “well-bracketed” polarized
categories. In this bracketing, ↙d and ↗d play the role of left brackets and
↖ d and ↘ d serve as the corresponding right brackets. Obviously, for a left
valency α, the corresponding right valency is ᾰ. We will call the pair (α, ᾰ)
correct.

Definition 8 Let G = (W,C, S, δ) be a CDG, (α, ᾰ) be a correct pair and γ ∈
Cat(C)+ be a string of categories. For both dependency valencies β in (α, ᾰ),
|γ|β will denote the number of occurrences of β in the valency projection ‖γ‖v.
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The values
∆L

α(γ) = max{|γ′|ᾰ − |γ′|α | γ′ is a prefix of γ},
∆R

α (γ) = max{|γ′|α − |γ′|ᾰ | γ′ is a suffix of γ}
express respectively the number of right and left non-neutralized dependency
valencies α (i.e. the maximal deficit of left and right α−parentheses) in γ 3 .

Let γ, γ1, γ2 ∈ Cat(C)+ be some strings of categories and (α, ᾰ) be a correct
valency pair.
1. If |γ|α = |γ|ᾰ = 0, then the pair (α, ᾰ) is neutralized in γ.
2. If (α, ᾰ) is neutralized in γ, γ1, and γ2, then it is also neutralized in γ1αγᾰγ2.

Finally, the use of iterative types leads to the following notion of realization.

Definition 9 For a category C = [αD∗\β], the categories [αβ], [αD\β],
[αD\D\β], [αD\D\D\β], etc. are realizations of C (similar for right itera-
tive categories). Replacing in a string of categories γ ∈ Cat(C)+ each category
having iterative subcategories by some its realization we obtain a realization of
γ. Let R(γ) denote the set of all realizations of γ.

Here is the two-test membership criterion.

Theorem 3 Let G = (W,C, S, δ) be a CDG. x ∈ L(G) iff there exist a string
of categories α ∈ δ(x) and some its realization γ ∈ R(α) such that:
1. ‖γ‖l `∗p S,
2. each correct pair (α, ᾰ) is neutralized in ‖γ‖v.

Proof. Its main part is the proof of the following lemma.

Lemma 1 The system of rules defining ` is equivalent to the system in
[Dik04], in which in the place of the rules Pl,Pl,Cl,Cr and Dl,Dr there are
the following distant dependency rules Dl

FA,Dr
FA :

Dl
FA. Γ1#(↙C)Γ2[(↖C)\α]Γ3 ` Γ1Γ2αΓ3.

The rule applies if there are no occurrences of categories ↙C and ↖C in Γ2.

This theorem enables efficient parsing algorithms for CDGs.

Algorithm pars we describe below is Earley style [Ear70]. When applied to a
string x = w1...wn, pars incrementally fills a triangular matrix M of size n × n,
whose element M [i, j], i < j, is a finite set of so called “items” 4 .

For a given CDG G = (W,C, S, δ), let L = (α1, . . . , αp) be the list of all positive and
negative left dependency valencies in↗C ∪ ↙C and R = (ᾰ1, . . . , ᾰp) be the list of
all corresponding negative and positive right dependency valencies in ↘C ∪ ↖C.
Items of pars have the form (I, lc, rc), lc = (∆L

α1
, . . . ,∆L

αp
) and rc = (∆R

α1
, . . . ,∆R

αp
)

3 Having in mind that there is γ′ = ε, the values ∆L
α(γ) and ∆R

α (γ) are non-negative.
4 The lines are indexed from 0 to n− 1 and the columns from 1 to n.
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are integer vectors, whose components are the corresponding differences of left and
right dependency valencies, and I = (

i

[ α′
j

D\α′′\D ′/β ]j , lc, rc), or I =

(
i

[ α\D ′/β′′/D
j

β′ ]r , lc, rc), or at last, I = (
i

[ α\D/β ]r
j

, lc, rc).

I of the first form represents categories with non-eliminated left-argument subtypes,
the second, with eliminated left- and non-eliminated right-argument subtypes, and
the third, with all subtypes eliminated.

pars uses operators PROPOSE, SUBORDINATE L and SUBORDINATE R.
The last two are similar, so we show one of them.

In algorithm PROPOSE, (αm) and (ᾰm) denote the corresponding members of
the lists L and R.

PROPOSE(i) (1 ≤ i ≤ n)
FORALL C = ‖γ‖l WHERE γ ∈ δ(wi)

DO
IF C = [ α\D/β ] and α = D′\α′ THEN

I =
i-1

[
i

D′\α′\D/β ]i

ELSE (α = ε)
I =

i-1

[ \D/β′/D′
i

]i

END IF;
FORALL αi ∈ L
DO

(lc)i = ∆L
αi

(γ); (rc)i = ∆R
αi

(γ)
END FORALL;
add (I, lc, rc) to M [i− 1, i]

END FORALL

SUBORDINATE L(i, j, k) (0 ≤ i < j < k ≤ n)
FORALL (

i

[ α1\D1/β1 ]r
j

, lc1, rc1) ∈M [i, j], and

(
j

[ α′
2

k

α′′
2D

′/β ]k , lc2, rc2) ∈M [j, k]

DO
FORALL m WHERE 1 ≤ m ≤ p (in lc and rc)
DO

(lc)m = (lc1)m + max{0, (lc2)m − (rc1)m};
(rc)m = (rc2)m + max{0, (rc1)m − (lc2)m}

END FORALL;
FORALL left-argument-iterative ω1, ω2

WHERE α′′
2 = ω1D2\ω2γ and (D2 = D1 or D2 = D∗

1)
DO

IF γ 6= ε THEN
add (

i

[ α′
2ω1D1\ω2

k

γD′/β ]k , lc, rc) to M [i, k]
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ELSE IF γ = ε and β 6= ε THEN
add (

i

[ α′
2α

′′
2D

′/β
k

]k , lc, rc) to M [i, k]

ELSE (γ = ε = β)
add (

i

[ α′
2α

′′
2D

′/ ]k
k

, lc, rc) to M [i, k]

END IF;
IF D2 = D∗

1 THEN
add (

i

[ α′
2ω1

k

D∗
1\ω2γD′/β ]k , lc, rc) to M [i, k]

END IF;
IF D 6∈ Anc(C) THEN

Γ = Γ ∪ {r D←− k}
END IF

END FORALL
END FORALL

Algorithm pars
Input: G ∈ CpD and x = w1...wn

Output: A DT T on x.

FORALL i incr 1 ≤ i ≤ n
DO

PROPOSE(i)
END FORALL;
FORALL k incr 1 ≤ k ≤ n
DO

FORALL j decr 0 ≤ j < k
DO

FORALL i incr 0 ≤ i < j:
DO

SUBORDINATE L(i, j, k)
END FORALL

END FORALL;
FORALL j decr 0 ≤ j < k
DO

FORALL i incr 0 ≤ i < j:
DO

SUBORDINATE R(i, j, k)
END FORALL

END FORALL
END FORALL
succeed when (

0
[ α\S/β ]r

n
, 0̄, 0̄) ∈M [0, n] for some α, β, r;

trace back the precursors of this item to identify the DT dependencies

pars is a correct and complete polynomial time parser of CDGs.
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Theorem 4 pars(G, x) succeeds iff x ∈ L(G).

Theorem 5 Let p be the number of all polarized categories. Then:
(1) pars has time complexity O(n2p+4),
(2) If p and dth(G) are constant, then pars has time complexity O(n4).

Remark. 1. In fact, the complexity of the membership problem w ∈ L(G) is
one order lower (there is no need in root indexes in the items): for instance,
in case (2) of this theorem we would have O(n3).
2. Clearly, if CDG G is projective, i.e. it doesn’t use polarized dependency
valencies, then dth(G) = 0 and the root indexes are also not needed.

Corollary 1 If p is constant, then:
(1) Projective CDGs are parsed in time O(n3).
(2) If dth(G)(n) = O(log n), then pars has time complexity O(n5+ε).
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7 Concluding remarks

The Categorial Dependency Grammars introduced in this paper combine type-
driven style fitting well the standard methods of constructing formal semantics
with valency/polarity style proper to dependency grammars. They can be eas-
ily adapted to practical definitions of surface dependency syntax of natural
languages. For this, elementary types should be provided with nonrecursive
feature structures and feature unification and propagation through dependen-
cies must be allowed. The use of anchored categories and oriented polarities
makes possible to express a variety of linear order constraints formulated in
terms of the so called topological domains (cf.[Br8]). At the same time, the
CDGs have the most efficient parsing algorithms as compared to other depen-
dency grammars expressing unlimited distant dependencies.
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